

## Special 24 Extension Ideas

Initially this is obviously a closed question. We're given that this special thing happens with 24 and the pupils work in different ways to get an answer.

BUT there are ways of opening this out by exploring the initial ideas and changing rules to investigate further.

Assuming that the answer has been found, we can:

A/ Ask the pupils to look at what happens generally when you perform the same operations [minus 1, double, add 1] on the square numbers [number 25 being the one in the question]. As is often the case it is worthwhile looking at the digital roots of the numbers we get. [See the article, <u>Digital Roots.</u>]

|    | square | minus 1 | doubled | D.R. | plus 1 | sqrt  |  |
|----|--------|---------|---------|------|--------|-------|--|
| 1  | 1      | 0       | 0       | 9    | 1      | 1     |  |
| 2  | 4      | 3       | 6       | 6    | 7      | 2.65  |  |
| 3  | 9      | 8       | 16      | 7    | 17     | 4.12  |  |
| 4  | 16     | 15      | 30      | 3    | 31     | 5.57  |  |
| 5  | 25     | 24      | 48      | 3    | 49     | 7     |  |
| 6  | 36     | 35      | 70      | 7    | 71     | 8.43  |  |
| 7  | 49     | 48      | 96      | 6    | 97     | 9.85  |  |
| 8  | 64     | 63      | 126     | 9    | 127    | 11.27 |  |
| 9  | 81     | 80      | 160     | 7    | 161    | 12.69 |  |
| 10 | 100    | 99      | 198     | 9    | 199    | 14.11 |  |
| 11 | 121    | 120     | 240     | 6    | 241    | 15.52 |  |
| 12 | 144    | 143     | 286     | 7    | 287    | 16.94 |  |
| 13 | 169    | 168     | 336     | 3    | 337    | 18.36 |  |
| 14 | 196    | 195     | 390     | 3    | 391    | 19.77 |  |
| 15 | 225    | 224     | 448     | 7    | 449    | 21.19 |  |
| 16 | 256    | 255     | 510     | 6    | 511    | 22.61 |  |
| 17 | 289    | 288     | 576     | 9    | 577    | 24.02 |  |
| 18 | 324    | 323     | 646     | 7    | 647    | 25.44 |  |
| 19 | 361    | 360     | 720     | 9    | 721    | 26.85 |  |
| 20 | 400    | 399     | 798     | 6    | 799    | 28.27 |  |
| 21 | 441    | 440     | 880     | 7    | 881    | 29.68 |  |
| 22 | 484    | 483     | 966     | 3    | 967    | 31.10 |  |
| 23 | 529    | 528     | 1056    | 3    | 1057   | 32.51 |  |
| 24 | 576    | 575     | 1150    | 7    | 1151   | 33.93 |  |
| 25 | 625    | 624     | 1248    | 6    | 1249   | 35.34 |  |
| 26 | 676    | 675     | 1350    | 9    | 1351   | 36.76 |  |
| 27 | 729    | 728     | 1456    | 7    | 1457   | 38.17 |  |
| 28 | 784    | 783     | 1566    | 9    | 1567   | 39.59 |  |
| 29 | 841    | 840     | 1680    | 6    | 1681   | 41    |  |

So that's the kind of table we end up with but when detective-like pupils look to find things, the digital roots certainly have something to offer.

B/ Ask the older or more experienced pupils to look again at the initial question - the idea of squaring a number, subtracting 1 and then doubling - and stopping just there





| A  | В      | С       | D       |  |  |
|----|--------|---------|---------|--|--|
|    | square | minus 1 | doubled |  |  |
| 1  | 1      | 0       | 0       |  |  |
| 2  | 4      | 3       | 6       |  |  |
| 3  | 9      | 8       | 16      |  |  |
| 4  | 16     | 15      | 30      |  |  |
| 5  | 25     | 24      | 48      |  |  |
| 6  | 36     | 35      | 70      |  |  |
| 7  | 49     | 48      | 96      |  |  |
| ~  | ~      | ~       | ~       |  |  |
| 17 | 289    | 288     | 576     |  |  |
| 18 | 324    | 323     | 646     |  |  |
| 19 | 361    | 360     | 720     |  |  |
| 20 | 400    | 399     | 798     |  |  |
| 21 | 441    | 440     | 880     |  |  |
| 22 | 484    | 483     | 966     |  |  |
| 23 | 529    | 528     | 1056    |  |  |
| 24 | 576    | 575     | 1150    |  |  |
| 2  | ~      | ~       | ~       |  |  |
| 29 | 841    | 840     | 1680    |  |  |
| 30 | 900    | 899     | 1798    |  |  |
| 31 | 961    | 960     | 1920    |  |  |
| 32 | 1024   | 1023    | 2046    |  |  |
| 33 | 1089   | 1088    | 2176    |  |  |
| 34 | 1156   | 1155    | 2310    |  |  |
| 35 | 1225   | 1224    | 2448    |  |  |
| 36 | 1296   | 1295    | 2590    |  |  |
| 37 | 1369   | 1368    | 2736    |  |  |
| 38 | 1444   | 1443    | 2886    |  |  |
| 39 | 1521   | 1520    | 3040    |  |  |
| 40 | 1600   | 1599    | 3198    |  |  |
| 41 | 1681   | 1680    | 3360    |  |  |

Having produced a table like this the same kind of question arises that you can ask the pupils, "What things can you see?" And off you go with them on another exploration.

Key Stage 3 & 4 pupils might take this onto a spreadsheet and explore, and using the special numbers that linked in the table above, could take the whole idea further. As an example of some of the kinds of things that may show up, have a look at this [which includes the special numbers only that link up, their square root, the doubling, the amount which has to be added on (no longer minus 1 but 0, 1, 4, 9), and the final square root, and the digital roots along the way]:



| A  | В      | С      | D    | E         | F    | G      | Н     | I      | J    | K      | L    | ĺ |
|----|--------|--------|------|-----------|------|--------|-------|--------|------|--------|------|---|
|    | C diff | Number | D.R. | sqrt C +1 | D.R. | C x2   | A sqd | G + H  | D.R. | sqrt I | D.R. |   |
| 0  |        | 288    | 9    | 17        | 8    | 576    | 0     | 576    | 9    | 24     | 6    |   |
| 1  | 552    | 840    | 3    | 29        | 2    | 1680   | 1     | 1681   | 7    | 41     | 5    |   |
| 2  | 840    | 1680   | 6    | 41        | 5    | 3360   | 4     | 3364   | 7    | 58     | 4    |   |
| 3  | 1128   | 2808   | 9    | 53        | 8    | 5616   | 9     | 5625   | 9    | 75     | 3    |   |
| 4  | 1416   | 4224   | 3    | 65        | 2    | 8448   | 16    | 8464   | 4    | 92     | 2    |   |
| 5  | 1704   | 5928   | 6    | 77        | 5    | 11856  | 25    | 11881  | 1    | 109    | 1    |   |
| 6  | 1992   | 7920   | 9    | 89        | 8    | 15840  | 36    | 15876  | 9    | 126    | 9    |   |
| 7  | 2280   | 10200  | 3    | 101       | 2    | 20400  | 49    | 20449  | 1    | 143    | 8    |   |
| 8  | 2568   | 12768  | 6    | 113       | 5    | 25536  | 64    | 25600  | 4    | 160    | 7    |   |
| 9  | 2856   | 15624  | 9    | 125       | 8    | 31248  | 81    | 31329  | 9    | 177    | 6    |   |
| 10 | 3144   | 18768  | 3    | 137       | 2    | 37536  | 100   | 37636  | 7    | 194    | 5    |   |
| 11 | 3432   | 22200  | 6    | 149       | 5    | 44400  | 121   | 44521  | 7    | 211    | 4    |   |
| 12 | 3720   | 25920  | 9    | 161       | 8    | 51840  | 144   | 51984  | 9    | 228    | 3    |   |
| 13 | 4008   | 29928  | 3    | 173       | 2    | 59856  | 169   | 60025  | 4    | 245    | 2    |   |
| 14 | 4296   | 34224  | 6    | 185       | 5    | 68448  | 196   | 68644  | 1    | 262    | 1    |   |
| 15 | 4584   | 38808  | 9    | 197       | 8    | 77616  | 225   | 77841  | 9    | 279    | 9    |   |
| 16 | 4872   | 43680  | 3    | 209       | 2    | 87360  | 256   | 87616  | 1    | 296    | 8    |   |
| 17 | 5160   | 48840  | 6    | 221       | 5    | 97680  | 289   | 97969  | 4    | 313    | 7    |   |
| 18 | 5448   | 54288  | 9    | 233       | 8    | 108576 | 324   | 108900 | 9    | 330    | 6    |   |
| 19 | 5736   | 60024  | 3    | 245       | 2    | 120048 | 361   | 120409 | 7    | 347    | 5    |   |
| 20 | 6024   | 66048  | 6    | 257       | 5    | 132096 | 400   | 132496 | 7    | 364    | 4    |   |
| 21 | 6312   | 72360  | 9    | 269       | 8    | 144720 | 441   | 145161 | 9    | 381    | 3    |   |
| 22 | 6600   | 78960  | 3    | 281       | 2    | 157920 | 484   | 158404 | 4    | 398    | 2    |   |
| 23 | 6888   | 85848  | 6    | 293       | 5    | 171696 | 529   | 172225 | 1    | 415    | 1    |   |
| 24 | 7176   | 93024  | 9    | 305       | 8    | 186048 | 576   | 186624 | 9    | 432    | 9    |   |
| 25 | 7464   | 100488 | 3    | 317       | 2    | 200976 | 625   | 201601 | 1    | 449    | 8    |   |

C/ Not forgetting this is about squares, we could do well to see the geometry involved and get the children looking at it spatially:

http://nrich.maths.org



| Small  |      | У  | A     | B and C | Z  | D     |       | Small sq. |      |
|--------|------|----|-------|---------|----|-------|-------|-----------|------|
| square |      |    |       |         |    |       |       | minus 1   |      |
|        |      |    |       |         |    |       |       | x2 and ?  |      |
| 5²     | 25   | 5  | 5×5   | 5×2     | 2  | 2×2   | 49    | 48+1      | 7²   |
| 172    | 289  | 17 | 17×17 | 17x7    | 7  | 7x7   | 576   | 576+0     | 24²  |
| 292    | 841  | 29 | 29×29 | 29x12   | 12 | 12×12 | 1681  | 1680+1    | 412  |
| 41²    | 1681 | 41 | 41×41 | 41x17   | 17 | 17×17 | 3364  | 3360+4    | 58²  |
| 53²    | 2809 | 53 | 53×53 | 53×22   | 22 | 22×22 | 5625  | 5616+9    | 75²  |
| 65²    | 4225 | 65 | 65×65 | 65x27   | 27 | 27×27 | 8464  | 8448+16   | 92²  |
| 772    | 5929 | 77 | 77×77 | 77x32   | 32 | 32×32 | 11881 | 11856+25  | 109² |
| 89²    | 7921 | 89 | 89×89 | 89×37   | 37 | 37x37 | 15876 | 15840+36  | 126² |

z

or another way might be:



and saying to the pupils "Tell me what you see".

So all in all it's a matter of opening doors for the pupils, letting them look in and asking them to tell you and each other what they see.

It's an opportunity to use some skills and knowledge that have come from other areas of mathematics, for example: the four rules of number, squares and roots, digital roots, patterns, spreadsheet use, shape and space ...