

For a right-angled triangle with a perimeter of 12units, show that the area is 36–6*c* units.

Once you've had a go at solving the problem, take a look below. The steps show a possible way to solve the problem, but they have all been muddled up.

Can you put them in the correct order?

Squaring both sides: $a^{2} + 2ab + b^{2} = 144 - 24c + c^{2}$
So Area of the triangle = 36 - 6c
a + b = 12 - c
So 2ab = 144 - 24c
Area of the triangle = ab/2
By Pythagoras's theorem, $\mathbf{a^2 + b^2 = c^2}$
a + b + c = 12
Dividing by 2: ab = 72 - 12c

Can you adapt your method, or the method above, to prove that when the perimeter is 30 units, the area is 225-15c units?

Extension

Can you find a general expression for the area of a right angled triangle with hypotenuse c and perimeter p?