

Cut out the statements and put them in order, to prove that powers of 2 cannot be written as the sum of two or more consecutive numbers.

Numbers of the form 2^n have no odd factors other than 1	А
Write the sequences above each other so the terms line up and add corresponding terms	В
If k is odd then $2a + k$ is odd and so the sum has an odd factor of $2a + k$. Since $a \ge 1$ and $k \ge 1$ we have $2a + k > 1$	С
Therefore $S = \frac{(k+1)(2a+k)}{2}$	D
Consider the consecutive numbers $a, (a + 1), (a + 2), \dots, (a + k)$, with $a \ge 1$ and $k \ge 1$	E
Since any sum of consecutive numbers must have an odd factor greater than 1, it cannot be of the form 2^n	F
$2S = (2a + k) + (2a + k) + \dots + (2a + k) + (2a + k)$	G
Therefore in every case the sum of the consecutive numbers has an odd factor which is greater than 1	н
Write down the sum of the numbers in descending order: $S = (a + k) + (a + k - 1) + \dots + (a + 1) + a$	Ι
There are $k + 1$ terms in 2S, each of which is equal to $(2a + k)$ therefore $2S = (k + 1)(2a + k)$	J
If k is even then $k + 1$ is odd and so the sum has an odd factor of $k + 1$. Since $k \ge 1$ we have $k + 1 > 1$	к
Write down the sum of the numbers in ascending order: $S = a + (a + 1) + (a + 2) + \dots + (a + k)$	L