

Cut out the statements and put them in order, to prove that powers of 2 cannot be written as the sum of two or more consecutive numbers.

| Therefore if $n$ is odd, the total will have an odd factor greater than 1, so cannot be a power of 2                                                       | A |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Since the numbers are evenly spread out, the mean is equal to the median                                                                                   | В |
| The total will be $n \times m$ , so the total will have an odd factor, which is equal to $n$                                                               | С |
| Take $n$ consecutive numbers, where $n > 1$                                                                                                                | D |
| The sum of the numbers is equal to the mean of the numbers multiplied by $n$                                                                               | E |
| Since the middle pair are consecutive numbers, we know that $(a + b)$ is odd, therefore the total will have an odd factor, which is equal to $(a + b)$     | F |
| The total will be $\frac{n}{2}(a+b)$ , so will have a factor equal to $(a+b)$                                                                              | G |
| If $n$ is odd then the median will be the same as the middle number, $m$                                                                                   | Н |
| Therefore the total of $n$ consecutive numbers has an odd factor greater than 1, for both odd and even values of $n$ , and so it can never be a power of 2 | Ι |
| If their total is a power of 2, all the factors of the total, other than 1, will be even                                                                   | J |
| Therefore if $n$ is even, the total will have an odd factor greater than 1, so cannot be a power of 2                                                      | К |
| If <i>n</i> is even, then the median will be half-way between the two middle numbers <i>a</i> and <i>b</i> , so the median is $\frac{1}{2}(a + b)$         | L |