

Cut out the statements and put them in order, to prove that powers of 2 cannot be written as the sum of two or more consecutive numbers.

Factorising gives $\frac{1}{2}[n(n+1) - m(m+1)]$	A
The sum of the consecutive numbers $m+1, m+2,, n$ is the same as the difference between the n^{th} and m^{th} triangular numbers	В
If <i>n</i> and <i>m</i> are both odd, or both even, then $n + m + 1$ is odd. Since <i>n</i> , $m \ge 1$ we know that $n + m + 1 > 1$.	С
Factorising gives $\frac{1}{2}(n-m)(n+m+1)$	D
The n^{th} triangular number is equal to $\frac{1}{2}n(n+1)$	Е
This is equal to $\frac{1}{2}[n^2 + n - m^2 - m]$	F
Therefore the expression $\frac{1}{2}(n-m)(n+m+1)$ always has an odd factor which is greater than 1	G
We can write the difference between the n^{th} and m^{th} triangular numbers as $\frac{1}{2}n(n+1) - \frac{1}{2}m(m+1)$, where $n \ge 1$, $m \ge 1$ and $n > m+1$	н
If one of n, m is odd and the other is even then $n - m$ is odd. We know that $n > m + 1$, so we have $n - m > 1$.	I
Substituting $n = m$ into $\frac{1}{2}[n^2 + n - m^2 - m]$ gives 0, so $(n - m)$ is a factor of $\frac{1}{2}[n^2 + n - m^2 - m]$	J
Numbers of the form 2^n have no odd factors other than 1	К
Since any sum of consecutive numbers must have an odd factor greater than 1, it cannot be of the form 2^n	L