I started with putting in few odd values of n into $9^n + 1^n$.

$$
91 + 11 = 10, 93 + 13 = 73 * 10, 95 + 15 = 5905 * 10
$$

Noticing that all of my result were a multiple of 10, I conjectured that $9^{2m-1} + 1^{2m-1} = 10p$, $m, p \in \mathbb{Z}^+$.

Proof (using induction)

As $1^{2m-1} = 1$ for all $m \in \mathbb{R}$, I only had to prove that $9^{2m-1} + 1$ was a multiple of 10.

Let $f(m) = 9^{2m-1} + 1$.

 $f(1) = 9 + 1 = 10$, which is obviously a multiple of 10.

Now, assume that $f(m)$ is a multiple of 10.

$$
f(m + 1) = 9^{2m+3} + 1 = 81 * 9^{2m-1} + 1
$$

$$
f(m + 1) - f(m) = 80 * 9^{2m-1}
$$

$$
f(m + 1) = 80 * 9^{2m-1} + f(m)
$$

Therefore, $f(m + 1)$ is a multiple of 10.

If $f(m)$ is a multiple of 10 then $f(m + 1)$ is shown to be a multiple of 10. As $f(1)$ is a multiple of 10, then $f(m)$ is a multiple of 10 for all $m \in \mathbb{Z}^+$.

Then, I noticed that each of the proposed problems were in the form $(10 - x)^n + x^n$ when n was odd and in the form $(10 - x)^n - x^n$ when *n* was even.

I considered if the general case, $(a - x)^n + x^n$, would be a multiple of a when n was odd and $(a-x)^n - x^n$ a multiple of a when n was even. After substituting in different values of a, x and n I decided my proposal was true and set about proving it.

Proof

Using the binomial expansion:

$$
(a-x)^n = \sum_{k=0}^n {n \choose k} a^{n-k} (-x)^k
$$

The last term is $(-x)^n$.

If *n* is odd then $(-x)^n = -(x^n)$ so adding x^n to $(a-x)^n$ produces a multiple of *a* as all of the other terms in the expansion share a factor of a .

But if *n* is even then $(-x)^n = x^n$ so subtracting x^n from $(a - x)^n$ produces a multiple of *a* using the same logic as before.

Therefore $(a-x)^n + x^n$ is a multiple of a when n is odd, and $(a-x)^n - x^n$ is a multiple of when n is even.