Tangles

Mike Pearson

1 How it all started

This is a personal story of discovery that began in February 2007 when a colleague of
mine, lan Short, showed me an interesting trick he’d seen in a lecture given by the
mathematician John Conway in Cambridge in 1998. At the very start of that lecture,
he said this:

What I like doing is taking something that other people thought was
complicated and difficult to understand, and finding a simple idea so that

any fool — and in this case, you — can understand the complicated thing.

He’s telling us there are lots of really difficult ideas out there that really aren’t that
difficult at all — if only we can see them from a better angle. Well, after reading the
lecture transcript it still took quite a long time to find the better angle to see his ‘little
trick’, but he had captured my interest and I ended up having a lot of fun investigating

it, and learnt quite a lot of mathematics on the way.

2 Conway’s rope trick

An edited transcript of the lecture was available on the web at the time I wrote this article

[2, page 10] , but It’s best to do the trick for real rather than work from diagrams. If you

can’t find the lecture on the web, try this book [9] instead. There is also a streamed video

transcript of a similar lecture delivered by Conway at http://www.msri.org/publications/In/msri/1997/1dt /¢
You need two ropes — skipping ropes are good — and four volunteers. Each volunteer

keeps hold of one skipping rope handle.

Now, arrange the 4 volunteers so the skipping ropes look like this from above:


http://www.msri.org/publications/ln/msri/1997/ldt/conway/1/index.html

This is the first and simplest example of a tangle. It’s so simple that you might even
dispute that it is a tangle, but instead of just saying that the ropes are untangled I'm
going to say that this is a tangle of value zero, or t = 0.

Now, our volunteers are allowed to make just two moves. Conway calls these moves
“Twist ’em up”’and “Turn ’em round”and makes a kind of a square dance out of them.
We'll just call the moves twist and turn for short.

In twist, the two volunteers on the right swap places — it’s important that the vol-
unteer in the top right corner always transfers the rope over the rope from the bottom
right corner. This adds a twist to the tangle so its value is now one more than it was

before.

In turn, all four volunteers turn clockwise through a quarter turn. This has a strange

effect on the value of the tangle - you have to divide it into 1 and change its sign. A

%; a value of 3 = % will become —%; and as a final example, a

value of —g will become %. Oh, and I mustn’t forget to say that turn takes 0 to oo and

value of % will become —

oo to 0.
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3 Doing the trick

Now, beginning with the zero tangle we can start the square dance!

Start | Move | End
0 twist 1
1 twist 2
2 twist 3
3 turn | — %

— % twist %
% twist g
g twist %
% turn | — %

— % twist g
% twist %

That’s probably far enough for now. You should have something that is nicely twisted
and tangled in the centre. Hopefully your antics have attracted an audience so you can
now ask them to direct the dance, choosing either twist or turn with the aim of getting
the tangle value back to zero.

When they succeed in getting the tangle value back to zero, you should find that
the ropes are also magically untangled. Hopefully your audience will discover the simple
rule that will help them decide whether a twist or a turn is needed at each stage of
disentangling.

You might like to watch of the trick being enacted by the NRICH Morris
Men.


http://nrich.maths.org/public/viewer.php?obj_id=5776

4 Did I miss something?

It may seem unsurprising that the ropes untangle at the end. After all, why shouldn’t
they? We did keep careful track of the tangle values all the way through and we did
start with an untangled value of zero. So if we’re back at zero why wouldn’t the ropes
be untangled? Did I miss something?

Let’s think about it for a minute though. It didn’t seem to matter what route we
took through all the possible tangles before returning to zero. Somehow, the tangle value
completely captured the state of the tangle and told us all we need to know to untangle
it. Are tangles really that organized? It certainly doesn’t feel like that in normal life.
There’s either some magic or some mathematics at work here. I must admit I have a
strong preference for there being mathematical explanations, and so it’s time to start

asking questions.
Question 1: FExactly what sort of tangles are we able to make with Conway’s rope trick?

It’s worth noticing that our square dance is not capable of producing just any old
tangle. Many tangles — anything that contains reef knots or granny knots or those
awkward tangles where one of the ropes is just knotted — are simply impossible to make
this way. Our rope trick works with just those tangles that can be made with the square
dance - no more and no less. Conway calls this subset of all possible tangles the Rational
Tangles because his trick demonstrates that they are uniquely identified by a rational
number. A rational number, by the way, is just another way of saying ‘fraction’ — i.e.
an integer divided by another integer. Just as there are tangles that are not rational,

there are also numbers that are not rational, such as v/2 and 7.

Question 2: Given any rational tangle, can you always get back to the zero tangle using
just twist and turn operations?
Think about this. The answer is Yes!. You should be able to develop an algorithm that

you can prove will always work.

Question 3: Given any rational number, can you always find a sequence of twist and

turn operations that will generate a tangle with that value?

Again the answer is Yes/, and you should be able to find a method that will always work.
The fact that Conway’s tangles only generate rational numbers leads to another

interesting line of thought:



Question 4: Can we give any meaning to the idea of an irrational tangle?

If you generate a sequence of rational numbers, there is no guarantee that they
will approach a rational limit. Some sequences, such as 0.9,0.99,0.999,0.9999, ... do.
Many do not. For example, the sequence 0,0.1,0.101,0.101001,0.1010010001, ... does
not approach a rational number even though it is clearly approaching a unique finite
limit.

One way to investigate this question is to look at sequences of repeated tangle moves,
attempting to find tangles with rational values that approach an irrational limit. The
limiting tangle — whatever that is — should in some sense be an irrational tangle.

For example, lets see what happens with the sequence that repeats T = & twists

followed a turn indefinitely. It generates the values
1 1 1

These calculations involve things called continued fractions. A little internet research,
or indeed, this article on NRICH by Alan and Toni Beardon will quickly throw up some
interesting continued fraction sequences for irrational numbers such as V2.

Oh, and you’ll find a short section of drainpipe very useful. [It’s all explained in this
video.

Here’s another question:
Question 5: Are all tangles really the same after only two turn moves?

Take a rational tangle and turn twice. it will have turned through 180 degrees. If
it’s a sufficiently complicated tangle it will not look like the original tangle. However, by
pulling on pairs of ropes carefully you should be able to convince yourself that indeed it
is the same as the original tangle.

This bothered me a lot when I first saw the trick because that turn move only turns
through 90 degrees and so it should take 4 turns to return the tangle to its original state.
However Conway tells us that the corresponding transform on the tangle value ¢ is

1

t— ——.

That’s strange, because this returns to the value ¢ after just 2 applications.
2 3 2

For example: 3 — —5 — 3 in just 2 steps
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http://nrich.maths.org/public/viewer.php?obj_id=1352
http://nrich.maths.org/public/viewer.php?obj_id=5681
http://nrich.maths.org/public/viewer.php?obj_id=5681

It seems that all tangles have a rotational symmetry of order 2. Now why is that?

In fact, rational tangles have even more symmetries. We’ve spotted that a 180 de-
gree turn about an axis perpendicular to the rope plane leaves the tangles unchanged.
This rotation swaps opposite pairs of rope handles. In our diagrams above, (star,
circle)—(square,triangle). There are two other axes — the vertical and horizontal axes in
the diagram — which swap (star,triangle)—circle,square), and (star,circle)—(triangle,square).

Make some complicated tangle up, and check for yourself that all these rotations
leave the tangle unchanged. Think about how you could prove this and then read [4}
Symmetric Tangles by Robert Crowston].

Question 6: If tangles are so symmetrical, is there a way to make them look symmet-

rical?

The awkward thing about tangles, or indeed knot theory in general, is that it can
be very hard to see that two identical tangles (or knots) really are the same, because
simple rope manipulations can change their appearance so easily. But maybe there is a
way of arranging every tangle so it is possible to see the underlying symmetry. Well, it
turns out that such a symmetrical arrangement is always possible. This is an image of
the tangle 4/3 in its symmetrical form. The symmetrical form offers many insights into

how the Conway Rope Trick works.




Perhaps after all this, you may be wondering why tangles are worthy of study? That

leads to the next question:
Question 7: What are tangles good for?

Rational tangles provide the only known example in the large theory of knots, of
a complete invariant. Much of knot theory is about telling the difference between one
knot and another, and an invariant is something you can use to describe a given knot
that will not change as you manipulate the knot in space. The trouble is that for
knots, no invariant is powerful enough to distinguish any knot from any other knot. The
tangle invariant is a useful lever to use when tackling that bigger problem. Conway first
developed the rational tangles in order to help tabulate all the prime knots and links up
to 11 and 10 crossings.

In [8] Joanna Lewis’s article on Drawing Doodles and Naming Knots you’ll be in-
troduced to some of the earlier schemes that were used for this purpose. These early

techniques were not very good at distinguishing one knot from another.
Question 8: Where now?
Find some ropes and start your own investigation! There’s plenty to discover, and

plenty more to read about. I recommend [I, The Knot Book] by Colin Adams as an

excellent introduction.


http://nrich.maths.org/admin/tagedit.php?obj_id=5787
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