Farey neighbours

It must be proved that

$$
\frac{b}{d} < \frac{a+b}{c+d} < \frac{a}{c}
$$

This can be split into two inequalities

$$
\frac{b}{d} < \frac{a+b}{c+d}
$$

and

$$
\frac{a+b}{c+d} < \frac{a}{c}
$$

To prove the first inequality:

$$
\frac{b}{d} < \frac{a+b}{c+d}
$$
\n
$$
\Rightarrow b(c+d) < d(a+b)
$$
\n
$$
\Rightarrow bc + bd < ad + bd
$$
\n
$$
\Rightarrow bc < ad
$$
\n
$$
\Rightarrow \frac{b}{d} < \frac{a}{c}
$$

The last inequality is true, therefore, the inverse of all the above steps can be carried out to obtain that $\frac{b}{d} < \frac{a+b}{c+d}$. $\frac{a+b}{c+d}$. A similar process can be carried out with the second inequality to confirm its truth

Let $\{F_i : i \in \mathbb{N}\}$ be the family of Farey sequences. Let $f_n : \mathbb{N} \to F_n$ such that $f_n(k)$ is the k^{th} Farey number in F_n ($k \in \mathbb{N}$).

Let $f_n(k) = \frac{b}{d}$ $\frac{b}{a}$ and $f_n(k + 1) = \frac{a}{c}$ $\frac{a}{c'}$ such that $c + d \le n + 1$. The aim is to show that ad $bc = 1$, which is the pattern observed for the Farey sequences I worked out.

Let it be assumed that $ad - bc = 1$ is true, i.e, the pattern holds for $f_n(k)$ and $f_n(k + 1)$. Then, it needs to be shown that the pattern holds for $f_{n+1}(k + 1)$ and $f_{n+1}(k + 2)$ (The pattern holds for $\frac{b}{a}$ and $\frac{a}{c}$ when $c + d > n + 1$, since, in this case, $f_n(k) = f_{n+1}(k+1)$, and $f_n(k+1) = f_{n+1}(k+2)$, so if $f_n(k)$ and $f_n(k+1)$ follow the pattern, then $f_{n+1}(k + 1)$ and $f_{n+1}(k + 2)$ will also follow the pattern; this is why the above restrictions were placed on $\frac{b}{d}$ and $\frac{a}{c}$)

$$
f_{n+1}(k+1) = \frac{a+b}{c+d}
$$

$$
f_{n+1}(k+2) = \frac{a}{c}
$$

To prove that the pattern holds for $f_{n+1}(k + 1)$ and $f_{n+1}(k + 2)$ if it is assumed that the pattern holds for $f_n(k)$ and $f_n(k + 1)$, the following calculation needs to be done:

$$
a(c+d) - c(a+b)
$$

$$
= ac + ad - ac - bc
$$

$$
= ad - bc
$$

$$
= 1
$$

Therefore, it is true that, if the pattern holds for $f_n(k)$ and $f_n(k + 1)$, the pattern also holds for $f_{n+1}(k + 1)$ and $f_{n+1}(k + 2)$

 $f_1(1) = \frac{0}{1}$ $\frac{0}{1}$ and $f_1(2) = \frac{1}{1}$. $\frac{1}{1}$. Since $(1)(1) - (0)(1) = 1$, the pattern holds for $f_1(1)$ and $f_1(2)$, so it holds for $f_2(2)$ and $f_2(3)$ and, more generally $f_n(n)$ and $f_n(n + 1)$, so we have shown that the pattern holds **across** the Farey sequences

Now, we need to prove that the pattern holds within the Farey sequences. Three consecutive numbers in F_n are $f_n(k) = \frac{b}{d}$ $\frac{b}{a'} f_n(k+1) = \frac{a+b}{c+d}$ $\frac{a+b}{c+d}$ and $f_n(k+2) = \frac{a}{c}$ $\mathcal C$

Let it be assumed that the pattern holds for $f_n(k)$ and $f_n(k + 1)$. It must then be proved that the pattern holds for $f_n(k + 1)$ and $f_n(k + 2)$.

For $f_n(k)$ and $f_n(k + 1)$, it is assumed that

$$
d(a + b) - b(c + d) = 1
$$

$$
\rightarrow ad + bd - bc - bd = 1
$$

$$
\rightarrow ad - bc = 1
$$

is true

For $f_n(k + 1)$ and $f_n(k + 2)$, the following calculation must be done

$$
a(c+d) - c(a+b)
$$

$$
= ac + ad - ac - bc
$$

$$
= ad - bc = 1
$$

,which is true if the pattern holds for $f_n(k)$ and $f_n(k + 1)$, so, if the pattern holds for $f_n(k)$ and $f_n(k + 1)$, then it also holds for $f_n(k + 1)$ and $f_n(k + 2)$. Similarly, it can be shown that, if a pattern holds for $f_n(k + 2)$ and $f_n(k + 1)$, then it holds for $f_n(k + 1)$ and $f_n(k)$. Since it has been shown that the pattern is true for $f_n(n)$ and $f_n(n+1)$, the

and

pattern is now true for each pair of consecutive rational numbers in every Farey sequence.