
Solution to the Magic Bag problem 

 

Let n = the number of balls in the bag. 

Let b = the number of black balls and w = the number of white balls. 

 

Clearly n = w + b,  so we can replace w with n – b.   

Without loss of generality we will assume that bw  . 
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which simplifies to   
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Equating this to ½ gives the equation:  n
2
 – n =  4b
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and this in turn simplifies to:        n =  (n – 2b)
2
  

 

          n =  (w – b)
2
   since w = n – b 

 

So n must be a square number, and given the context n > 1, so w  b. 

 

Now, consider Tk, the k
th

 triangular number:  Tk = 
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       2Tk = k
2
 + k  

       k
2
  = 2Tk – k 

So every square number can be written as a function of its corresponding triangular number and their 

index. 

 

 Thus since n is a square number,  n = nT
n
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   giving the result that w = 
n
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So in order for the probability to be ½, the total number of balls must be a square number and the 

number of white balls must be the corresponding triangular number. 

If we take n, the total number of balls, as k
2
, then w = )1(
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This establishes the number of black balls as b = )1()1(
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12  kkkkk , i.e. the previous 

triangular number. 



 

In conclusion, the numbers of white and black balls must be consecutive triangular numbers in order 

for the given probability to equal ½. 

 

 

We have proved the necessity of this condition.  It is a relatively simple matter to prove sufficiency: 

 

Given )1(
2

1 kk  white balls and )1(
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1 kk  black balls in a bag, the probability of two randomly 

selected balls being the same colour is: 
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which (eventually) simplifies to 
2

1 . 

 

 

This wraps it up nicely:  the scenario described occurs with probability ½ if and only if the numbers of 

black and white balls in the magic bag are consecutive triangular numbers. 


