
NRICH “Mechanical Mindgames”, PART 3, Elliott Gordon 

 

Two spheres of solid lead of radius 1m are in deep space stationary relative 

to each other and a fixed origin with a distance of 3m between their centres. 

If we ignore all gravitational effects other than those due to the two spheres, 

estimate how fast they will be moving when they strike. You might also try to 

estimate how long it will take before they collide. How do the results change 

for 1cm lead spheres with a distance of 3cm between their centres? 

When a particle falls under the action of gravity, the acceleration is given by 

Newton's 2nd law F=ma and the magnitude of the force by Newton's law of 

gravity F=−GmM/r
2 

 

In order to find the force acting on each sphere, one must calculate their mass. 

Since their volume is given, finding a value of their density will suffice this 

purpose. Wikipedia says that lead has a density of 11.34𝑔𝑐𝑚−3. Turning this into 

SI units: 

𝑑 =
11.34𝑔

1𝑐𝑚3
×

1𝑘𝑔

1000𝑔
×

106𝑐𝑚3

1𝑚3
= 11340𝑘𝑔𝑚−3 

The volume of each sphere is given by the formula (using r=1): 

𝑉 =
4

3
𝜋𝑟3 

So the mass of each sphere is given by: 

𝑚 = 𝑉𝑑 = 4.1888 × 11340 = 47501𝑘𝑔 

Finding the net force on each sphere is complex, since each atom in one sphere 

receives different forces from different atoms in the other.  The net force on the 

sphere would itself be the sum of all of the forces on each individual atom, 

overcomplicating the analysis.  Since the question asks to estimate the speed, 

each sphere may be treated as a point mass (located in its centre) to simplify the 

situation.  That said, a possible approach to solve the problem is using energy 

considerations: 

Let the fixed origin be in the midpoint between the two spheres, considered as 

point masses A and B.  Since they receive equal and opposite forces, and are 

placed symmetrically with respect to the origin, they will move symmetrically 

with respect to it.  Let x be the distance from the origin to each of the point 

masses at a moment in time.  At that moment, the force on each mass will be: 



𝐹 = −𝐺
𝑀𝑚

𝑟2
= −𝐺

𝑚2

 2𝑥 2
= −𝐺

𝑚2

4𝑥2
 

Since the energy transferred to an object by a force F acting along a distance d is 

given by 𝑊 = 𝐹𝑑, the energy transferred to each mass by the gravitational force 

is equivalent to the area enclosed by the graph of F against x between the two 

values of x that determine the traversed distance d.  Since the masses start 1.5 

meters from the origin, and touch at the origin (with their centres each at a 

distance of 1 meter from the origin), the two values of x will be 1.5 and 1.  The 

value of this area can now be evaluated by the integral: 

𝑊 =  −𝐺
𝑚2

4𝑥2
𝑑𝑥

1.5

1

= [𝐺
𝑚2

4𝑥
]1

1.5 

Substituting in the values of the constant 𝐺 = 6.67 × 10−11  and the mass 

𝑚 = 47500 to evaluate the integral: 

𝑊 =
𝐺𝑚2

4(1.5)
−

𝐺𝑚2

4 1 
= 0.025082 − 0.037623 = −0.012541𝐽 

That is the amount of gravitational potential energy gained by each sphere from 

the initial situation until the time of contact.  All this energy is turned into kinetic 

energy, so: 

𝑊 =
1

2
𝑚𝑣2 = 0.012541 

Making v the subject to compute a numerical answer: 

𝑣 =  2
𝑊

𝑚
= 7.27 × 10−4 

One can thus estimate that the spheres will strike with a speed of 7.27 ×

10−4𝑚𝑠−1 each. 

 

There is another approach to the problem that doesn’t involve energies: 

As established previously, placing the origin in the midpoint of the spheres with 

a distance x from it to each point mass results in a force on either: 

𝐹 = −𝐺
𝑚2

4𝑥2
 

Dividing both sides by m and applying Newton’s third law 𝐹 = 𝑚𝑎 gives an 

acceleration of: 



𝐹

𝑚
= a = −𝐺

𝑚

4𝑥2
 

But the definition of acceleration is: 

𝑎 =
𝑑𝑣

𝑑𝑡
 

Applying the chain rule of differentiation: 

𝑎 =
𝑑𝑣

𝑑𝑥
×

𝑑𝑥

𝑑𝑡
 

But the definition of velocity is: 

𝑣 =
𝑑𝑥

𝑑𝑡
 

Substituting this into the first equation: 

𝑎 = 𝑣
𝑑𝑣

𝑑𝑥
 

Substituting in the initial expression for a: 

𝑣
𝑑𝑣

𝑑𝑥
= −𝐺

𝑚

4𝑥2
 

Integrating both sides of the equation with respect to x gives: 

 𝑣
𝑑𝑣

𝑑𝑥
𝑑𝑥 =  −𝐺

𝑚

4𝑥2
𝑑𝑥 

The dx “cancels out” on the left hand side, and the integral to the right can be 

found: 

 𝑣𝑑𝑣 = 𝐺
𝑚

4𝑥
+ c 

The left hand side can now be integrated: 

1

2
𝑣2 = 𝐺

𝑚

4𝑥
+ c 

Solving the differential equation has given an equation with v in terms of x, 

which will give the required solution.  First the value of c must be found in order 

to complete the equation.  When x=1.5 the spheres are in the initial position, and 

therefore stationary, so v=0.  Substituting these two values into the equation 

gives the correct value of c: 

0 = 𝐺
𝑚

4(1.5)
+ c 

Solving and computing the result: 

𝑐 = −𝐺
𝑚

6
= −5.2804 × 10−7 



Now, knowing the fact that the spheres touch at x=1, and using this value of c, the 

corresponding velocity may be found: 

1

2
𝑣2 = 𝐺

𝑚

4
+ c 

Making v the subject and computing the result: 

𝑣 =  2(𝐺
𝑚

4
+ c) = 7.27 × 10−4 

Again, by this different method it is also possible to estimate that the spheres will 

have a speed of 7.27 × 10−4𝑚𝑠−1 at the moment of impact. 

 

To estimate the time taken for the spheres to collide, one could use a midpoint 

value of the speeds that the sphere takes along its trail (i.e. halving the maximum 

speed of 7.27 × 10−4𝑚𝑠−1  gives a midpoint speed of 3.64 × 10−4𝑚𝑠−1 ).  

Knowing that the total distance travelled by the sphere is 0.5 meters, the time is 

given by: 

𝑡 =
𝑑

𝑣
=

0.5

3.64 × 10−4
= 1373 ≈ 1000𝑠 

Thus, a possible estimate of the time taken for the spheres to collide is 1000 

seconds. 

 

(To calculate the time taken for the spheres to collide, one could use the solution 

to the previous differential equation: 

1

2
𝑣2 = 𝐺

𝑚

4𝑥
+ c 

Then make the inverse of v the subject of the equation and integrate with respect 

to x (this gives the time in function of the position x).  Solving this differential 

equation should give an accurate value of the time taken) 

 

For spheres of 1cm with 3cm between their centres: 

The mass of each sphere is: 

𝑚 = 𝑉𝑑 =
4

3
𝜋 × (10−2)3 × 11340 = 0.047501𝑘𝑔 

Repeating the analysis for the new dimensions gives the same differential 

equation with the previous solution: 



1

2
𝑣2 = 𝐺

𝑚

4𝑥
+ c 

But with a different value of c (calculated for x=1.5cm, v=0) 

𝑐 = −𝐺
𝑚

4(1.5 × 10−2)
= −5.2804 × 10−11  

Using this value and x=1cm (when the spheres touch) in the equation gives the 

corresponding v: 

𝑣 =  2(𝐺
𝑚

4(10−2)
+ c) = 7.26 × 10−6 

And, again, using a midpoint value for the speed of 3.64 × 10−6𝑚𝑠−1 allows an 

estimation of the time taken: 

𝑡 =
𝑑

𝑣
=

0.5 × 10−2

3.64 × 10−6
= 1373 ≈ 1000 

It can thus be estimated that the spheres touch after 1000𝑠 with a speed of 

7.26 × 10−6𝑚𝑠−1.  This is the same amount of time taken as the larger spheres, 

and a speed 100 times smaller.  This is because the masses vary bya factor of 106  

and the distances vary by a factor of 102 , so for the small spheres the 

acceleration decreases by a factor of 106  and increases twice by a factor of 102: 

the acceleration is 100 times smaller, and therefore the final velocity is 100 times 

smaller as well (over a distance 100 times smaller this results in the same time 

taken). 

 

When a particle falls under the action of gravity, the acceleration is given by 

Newton's 2nd lawF=maand the magnitude of the force by Newton's law of 

gravityF=−GmM/r
2. Experimentation indicates that the numerical value of the 

littlem 

in each equation is identical, and the principle of equivalence (which appears to be 

true) asserts that they are mathematically identical. Think about this; it is good to 

understand. Does it surprise you? 

 

By equating the two F’s and cancelling the m’s one obtains an expression for a: 

𝑎 = −𝐺
𝑚

𝑟2
 

The main implication of the two m’s being the same is thatthe acceleration 

experienced by a mass under gravity depends on the mass of the object it is 

attracted to and the distance between them, but does not depend on the mass of 



the object itself.  We therefore speak of the acceleration of gravity rather than the 

force of gravity when we solve problems concerned with motion under this force.  

This can, at first, seem surprising and counterintuitive: the classic example of a 

leaf or feather being dropped simultaneously to a stone (the stone falls faster) 

seems to contradict the theory.  One could think that the smaller mass of the 

feather reduces the gravitational pull acting on it, whereas the greater mass of 

the stone gives it a greater acceleration.  However, it is actually the greater 

amount of air resistance on the feather that significantly reduces its acceleration 

due to its small mass.  If both the stone and the feather (or any two objects) were 

dropped in a vacuum, the two would experience the exact same motion 

regardless of their masses, since there would be no air resistance. 

 

A certain mathematical particle is defined to have speed 1 for irrational values of 

time and speed 0 for rational values of time. Would it make sense for this particle 

to move? 

[Note from NRICH: it might also be possible to argue that the particle does move if 

notions of speed and integration are redefined. This is a persuasive argument that 

the particle would remain fixed based on standard notions of speed and 

integration] 

 

Such a particle would not move because: 

The distance moved by a particle with a speed v during a time interval ∆t is given 

by: 

∆𝑥 = 𝑣∆𝑡 

It is obvious from the formula that in order for the particle to move (for ∆𝑥 > 0), 

both v and ∆t must be greater than 0: 𝑣, ∆𝑡 > 0. 

In the case of the particle under consideration, 𝑣 = 0 when time is rational, so, 

for these time values, the particle will not move.  For irrational time values, 𝑣 =

1, so the particle will only move if there exists a time interval ∆𝑡 = 𝑡2 − 𝑡1 > 0 in 

which the particle can sustain this speed.  In other words, in order for the 

particle to move, there must exist two real numbers, 𝛼 and𝛽, where𝛼 − 𝛽 > 0, 

such that the interval ]𝛼, 𝛽[ only contains irrational numbers (i.e. contains no 

rationals), in symbols: if 𝑥 ∈ ]𝛼, 𝛽[, then 𝑥 ∈ ℝ ∖ ℚ.  However, no two such 𝛼 and 

𝛽exist.  



Proof: 

Let 𝛼 and 𝛽be two real numbers where 𝛼 > 𝛽 (and therefore𝛼 − 𝛽 > 0) 

If the interval ]𝛼, 𝛽[ encloses an integer, it also encloses a rational (because 

integers are also rationals). 

If the interval ]𝛼, 𝛽[ does not enclose an integer, then the numbers 𝛼 and 𝛽have 

the same integral part (they only differ in their decimal part), and may be written 

as a string of digits with an infinite decimal expansion: 

𝛼 = 𝑁𝑚 …𝑁2𝑁1. 𝑎1𝑎2𝑎3 … 

𝛽 = 𝑁𝑚 …𝑁2𝑁1. 𝑏1𝑏2𝑏3 … 

Since 𝛼 ≠ 𝛽, there must be some point along the decimal expansion of 𝛼 and 𝛽 

where their digits are different.  Let the first different decimals be 𝑎𝑛 ≠ 𝑏𝑛  (in 

the special case that 𝑎𝑛 = 1 + 𝑏𝑛  and that after the first different decimal, 𝛼 has a 

string of 0’s in its expansion whilst 𝛽 has a string of 9’s, take 𝑎𝑛 ≠ 𝑏𝑛  to be 

instead the second set of two different decimals other than 0 and 9 in the 

expansion, which must exist because otherwise 𝛼 = 𝛽).  Because 𝛼 > 𝛽, then 

necessarily 𝑎𝑛 > 𝑏𝑛 .   

Now, let 𝑎𝑚 ,(where 𝑚 > 𝑛) be the second non-zero decimal after 𝑎𝑛  in the 

expansion of 𝛼.  Then, the number  

𝑟 = 𝛼 − 0. 𝑟1𝑟2 …𝑟𝑚−1𝑎𝑚𝑎𝑚+1 … = 𝛼 − 0.00 … 0𝑎𝑚𝑎𝑚+1 …; (𝑟1, 𝑟2, … 𝑟𝑚−1 = 0) 

which can be rewritten as 

𝑟 = 𝑁𝑚 …𝑁2𝑁1. 𝑎1𝑎2𝑎3 …𝑎𝑚−1 

isnecessarily contained within the interval ]𝛼, 𝛽[ and is rational since it has a 

finite amount of decimals. 

In the case that 𝑎𝑚  does not exist (i.e. every decimal after 𝑎𝑛  is 0), then let 𝑏𝑚  be 

the second non-9 digit after 𝑏𝑛  in the expansion of 𝛽.  Then, the number  

𝑟 = 𝛽 + 0. 𝑟1𝑟2 …𝑟𝑚−1𝑐𝑚𝑐𝑚+1 …; where𝑟1, 𝑟2, … 𝑟𝑚−1 = 0 and where 𝑐𝑚  is defined 

to be the number such that 𝑐𝑚 + 𝑏𝑚 = 9 

can also be written as 

𝑟 = 𝑁𝑚 …𝑁2𝑁1. 𝑏1𝑏2 …𝑏𝑚−1999 … 

Again, the number r is necessarily contained within the interval ]𝛼, 𝛽[ and is 

rational since it ends in a periodic string of 9’s. 

Thus, in every case, there is a rational number contained within any interval of 

real numbers ]𝛼, 𝛽[. Q.E.D. 



Therefore, there exists no interval of real numbers ]𝛼, 𝛽[ where 𝛼 − 𝛽 > 0, that 

only includes irrational numbers, so there exists no time interval ∆𝑡 > 0 along 

which the particle has a positive speed, so the particle does not move.  

 


