Angle of Shot Part |

Here is the formula to calculate the distance, D, a projectile will travel when thrown with velocity v, from an
initial height yo and an angle of trajectory 6 with acceleration due to gravity of g:
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To find the value of 6 that maximises D when v, g and y, are constant, we must differentiate with respect to
theta. Using a combination of the product rule and the chain rule:
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For the purposes of simplification, suppose that:
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Once again for simplification, suppose that:
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When D is at a maximum, the derivative of D with respect to 0 is equal to zero. Therefore:
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Suppose, for the purposes of simplification, that:

k= cos®@

Then:
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Therefore with some manipulation and a messy expansion the equation can be simplified:
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Expanding gives:
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But recall what we let k and ¢ represent:
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Therefore the value of 8 which gives the maximum value of D is given by:
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Now we can consider reasonable assumptions about the nature of the shot to arrive at a reliable estimate for
the optimum angle for the shot putter to throw the shot at. Since the shot is being released from headheight,
which is likely to be around 6 feet, we can assume that y, is around 1.8m. Acceleration due to gravity at the
earth’s surface is given to be 9.81ms®. Now we can work out an estimate for v. Let us assume that the
thrower can put 350 N of force into the shot. Let us also assume that they accelerate the shot for around 0.35
seconds. The mass of a standard shot is 7.26kg. Then:
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Therefore, using our assumptions, an estimate for our optimum angle is:
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So our approximate optimum angle to maximise the shot length is
somewhere near 43 degrees.



