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‘1’ IS FOR INDUCTION

Tim Rowland

I've recently been thinking about different kinds of
problem-solving activities, how students have
responded to them and what they have learned from
engaging with them. I’ll begin by asking you to take
five minutes to consider, if you will, zow you mught go
abour tackling each of the following problems. (Feel
free to put the rest of my article aside, if any of them
really interests you).

1 Boundary: An integer-sided square is subdi-
vided into a grid of unit squares. How many unit
squares lie on the boundary?

2 Diagonal: How many unit squares lie on the
diagonals of the above square grid?

3  Fifteen: Choose a positive whole number and
write down all of its factors, including the chosen
number and 1. Now add all the digits of those
factors (that sum would be 5 if you had chosen
13). Repeat the whole process on the new
number. Keep going. Try different starting
numbers.

4 Stairs: In how many different ways can you
ascend a flight of stairs in ones and twos?

5 Partitions: The number 3 can be ‘partitioned’
into an ordered sum of (one or more) positive
numbers in the following four ways: 3, 2+1,
1+2, 1+1+1. In how many ways can other
positive numbers be partitioned?

6 Swums of squares: In how many different ways
can a prime number be written as a sum of two
square numbers? What about non-primes?

7 Polygram: A polygram is constructed by
joining alternate vertices of a polygon with
straight lines (the best-known example is a
pentagram). At each vertex of the polygram, an
internal angle is formed between adjacent edges.
What is the sum of these angles of a polygram?

8 Painted cube: A cube is made up from lots of
little cubes, and the surface is painted red. How
many little cubes have three painted faces? Two
faces? One? None?

Your response to each problem, your heuristic
for solving it, will depend on a number of factors.
One of these will be whether you have encountered
and worked on the same problem before. If you
have, it may offer little challenge to you and
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probably little interest. Another factor, I suggest, is
whether you feel you have a secure analytical
overview of the situation presented in the problem.
By that, I mean whether you feel able to approach it
with some general case in mind.

That’s how I described my initial reaction to
Painted cube in MT143 [1]. T feel the same about
Boundary. 1 can ‘see’ a general square. I ‘count’ the
non-corner boundary unit squares (‘side minus 2’°, 4
times) and add the 4 corner squares. Another person
might prefer to collect some numerical data on the
boundaries of particular square. Example — a 4-by-4
square has 12 unit squares on the boundary. Tty it
with some children in your class. What do they
choose to do? Was that what you expected? More
difficult — how will you constrain their choices (or
try to avoid constraining them) by the way you
present the problem, the materials you offer them,
the recording methods you suggest (or do not), or
the prior judgements you make about how they are
likely to approach the problem?

I have included Polygram for my own benefit. I
invented the problem (without claim to originality)
but have not yet worked on it, and so I can think
aloud as I write. I have no instant sense of how it
might develop. I know that for a regular pentagram,
the angles add to 180°, but that’s all. Well, not quite.
I suspect that the angles of every pentagram will have
the same sum. I know that a hexagram consists of
two distinct triangles, and so the angle sum will be
360°. And so, almost despite myself, I have one
conjecture about polygrams in general. But, unlike
with Boundary, I had to examine some data, some
particular cases, to gain a sense of what might be the
case for any polygram.

For me, Diagonal (which 1 also devised as I
started to write) lies somewhere between Boundary
and Polygram. 1 anticipate that the ‘rules’ for even-
and odd-sided squares will be slightly different,
because only the latter have a ‘middle’ unit square
on both diagonals. Ah . . . it wasn’t as obvious as
Boundary, but I have a growing sense of the general
case.

I doubt whether anyone who has not worked on
(or read about) Swums of squares would have a feel for
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what it’s about without generating some data, such
as 53=2+7? (unique apart from order). The
number 59 cannot be so expressed, whereas
65=12+8? or 4>+ 72

Induction

Some, but not all, of the problems listed above seem
to invite the search for regularity among examples, in
order to make predictions about other particular
cases (such as the sum of the angles of a 10-gram)
and to arrive at conjectures of a more general kind.
The word ‘conjecture’ captures the idea that
knowledge of the general case, or any case beyond
the data in hand, is for the moment provisional,
tentative. The process of arriving at such a conjec-
ture from a finite data-set is mduction (or inductive
inference), with a small ‘i’. Unfortunately, mathe-
maticians are conditioned to associate ‘induction’
with Mathematical Induction (with a capital T),
which is a schema for a particular kind of proof
about propositions to do with all natural numbers.

I recall, at school, summing cubes of integers to
observe that each partial sum was the square of a
triangular number as a prelude to Proof by
Mathematical Induction.

1°+2°=3% 1°+2°+3°=6% 1°+2°+3°+4°=10%. ..

The proof-process (Induction) was carefully
named, but not the process (induction) of arriving at
the statement to be proved. I am sure little has
changed. Given the current concern for ‘proper’
mathematical vocabulary [2], perhaps the time has
come to introduce ‘induction’ into the language
(and practice!) of the mathematics classroom.

I am speaking of induction here as a scientist
would, in relation to discovery or invention.
Inductive reasoning takes the thinker beyond the
evidence, by somehow discovering (by generalisa-
tion) some additional knowledge inside themselves.
The mechanism which enables an individual to
arrive at plausible, if uncertain, belief about a whole
population, an infinite set, from actual knowledge of
a few items from the set, is mysterious. The nine-
teenth-century scientist William Whewell captures
the wonder of it all:

Induction moves upward, and deduction
downwards, on the same stair [ . . .].
Deduction descends steadily and methodi-
cally, step by step: Induction mounts by a
leap which is out of the reach of method. She
bounds to the top of the stairs at once [. . .].
(3, p114]

Here deduction is portrayed in terms of descent,
just as a syllogism is presented on the written page —
methodical, steady, safe, descending. By contrast,
induction is framed as daring, creative, ascending.
Whewell discusses the symbiotic relationship
between induction and deduction. They must be
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‘processes of the same mind’. Without induction
there is nothing to justify by deduction; but it is the
business of deduction, writes Whewell, to ‘establish
the solidity of her companion’s footing’.!

Why should we want to draw attention to
induction by naming it in the classroom? Because to
celebrate induction is to highlight the humanity of
mathematics and the character of mathematical
invention. I call two witnesses in support of this
claim.

Analysis and natural philosophy owe their
most important discoveries to this fruitful
means, which is called induction. Newton
was indebted to it for his theorems of the
binomial and the principle of universal
gravity [4, p176].

The purpose of rigour is to legitimate the
conquests of the intuition. (Hadamard,
quoted by Burn [5, p1]).

On a personal note, I would add that some of the
work that has given me the greatest pleasure to write
(and thanks frequently to MT) to publish, has
consisted of accounts of the inductive muse at work
in myself.” The consequence has been a powerful
desire to offer opportunities to the students I have
taught in school and at university, to experience the
same delight and sense of mathemarical ‘one-ness’.

Proof and naive empiricism

Lest I be misunderstood, it is important to remark
that there is more to mathematics than induction.
Believing is not the same as knowing. Indeed,
induction carries the danger of premature conviction.
Recently, I worked on Parations with some
primary PGCE students. The students accumulated
data about partitions of 2, 3 and 4, and observed a
doubling pattern. Some checked that it extended to
partitions of 5. They were finished! Those who
formulated this as P(n)=2"'" were more than
finished, and well satisfied. “But how do you know”,
I asked, “that it will continue to double every time?”
The typical response was along the line, “Well, it has
up to now, so it seems reasonable to suppose that it
always will”. This is naive empiricism at work. As
Reuben Hersh has remarked,
In the classroom, convincing is no problem.
Students are all too easily convinced. Two
special cases will do it [7, p396].

The teacher’s invitation to scepticism about patterns
seems like rather an empty gesture. Most of the
time, a few special cases do point the way to eternity.’
The point of the teacher’s proof-provoking question
is not to achieve certainty — which is already assured
— but to encourage the quest for insight. As Hersh
says, the primary purpose of proof in the teaching
context is to explamn, to illuminate why something is
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the case rather than to be assured that it is the case.

There is a genuine problem here, especially but
by no means exclusively with younger pupils. So
often, explanation is of a quite different order of
difficulty from inductive conviction. Number theory,
in particular, is so amenable to conjecture yet so
resistant to proof. For example (see Swuins of squares),
Fermat’s proof by descent that primes of the form
4k+1 can be uniquely expressed as the sum of two
squares presents a challenge even to mathematics
undergraduates.

At least the theorem (about expressing primes as
sums of squares) is of major significance. This is
more than can be said of the (admittedly curious)
outcome of Fifteen — the conjecture thar every such
sequence arrives and remains fixed at 15 sooner or
later. In a recent issue of Egquals, Fifteen is
commended as a good Key Stage 2 whole-class
starter [8]. I would agree that it offers a motivating
context for work on divisors and gives rise to a nice
tree of sequences. Beyond that, I feel very uncom-
fortable with it, because there seems to be little
prospect of either pupil or teacher being able to
explain why each sequence should include 15*. There
is a plethora of such ‘chain’ investigations, such as
Happy and sad numbers, which are to do with
summing the squares of the digits of an integer, and
iterating on that sum.” For me, Fifteen is uncomfort-
ably reminiscent of the notorious Thwaites’
Conjecture,® a dead-end for the classroom if ever
there was one.

I am appealing for teachers, in choosing problem
starters, to have a sense of whether inductive conjec-
ture is almost certain to be a terminus for the
investigation. Is that what they want? Every time?
What message will that give about the nature of
mathematics, apart (hopefully) from being good
fun? What price the ‘Ahal’ of insight, of rational,
connected mathematical knowledge?

Ideally, we might hope for pupils to generate
their own explanations. More often, we might
attempt to point them towards ways of perceiving
the problem situations that have the potential to
prompt explanatory insight. 1 believe that the
‘generic example’ can play a crucial role in this latter
respect. The generic example is a confirming
instance of a proposition, carefully presented so as to
provide insight as to why the proposition holds true
for that single instance.

The generic example involves making explicit

the reasons for the truth of an assertion by

means of operations or transformations on an
object that is not there in its own right, but as

a characteristic representative of the class

[10, p219].

I have argued elsewhere [11] for the unrealised
pedagogic potential of generic examples, and will
settle for one topical illustration here.
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The 1997 Ofsted video Teachers count features
one teacher, Kate, with a class of 10- and 1l-year-
olds. In the middle phase of the ‘Numeracy hour’
lesson, the children investigate the Fader problem in
small groups, before being brought together by Kate
(presumably for some direct teaching). The solution
turns out to hinge on the fact that every square
number has an odd number of factors. In fact, Kate
explains this to the class by reference to (what we
recognise as) a generic example. She points out that
every factor of 36 has a distinct co-factor, with the
exception of 6, and so it must follow that 36 has an
odd number of factors. She then generalises, ‘One of
the factors of a square number is a number times
itself (sic); that's why it’s a square number, isn’t it?’
Her choice of 36 is interesting — small enough to be
accessible with mental arithmetic but with sufficient
factors to be non-trivial. Not surprisingly, no
reference is made in the commentary to this aspect
of her teaching and proof strategy.

Empirical and structural
generalisation

Inductive inference has to start with examples, but if
investigation finishes with ‘spotting a pattern’ (or
even stating a formula) it remains at the level of
naive empiricism. As my students said, “Well, it has
up to now, so it seems reasonable to suppose that it
always will’. Liz Bills and I have tried to distinguish
between two kinds of generalisation.’
e Empirical — that which ‘merely’ generalises from
tabulated numerical data
e Structural — deriving from an overview of the
situation from which the data arises.
...We emphasise that one form of generalisation
is achieved by considering the form of results,
whilst the other is made by looking at the under-
lying meanings, structures or procedures [12].
Empirical generalisation may in time become
structural; if knowing rhar becomes knowing why,
when an explanation for what is observed becomes
available. Empirical generalisation is authentic,
important but incomplete, mathematics. My
opening problem set was chosen to exemplify some
situations which seem to require data to be collected
(and typically tabulated) before any progress
towards empirical generalisation is possible, as well
as others where structural generalisation is an
immediate prospect. The response (empirical or
structural) 1s in part a function of the student and
the classroom environment determined by the
teacher, not solely of the problem in isolation.
Again, I suggest that it is important for teachers
to have a sense of how different individuals will
respond to a given starting point — empirically or
structurally. At different times, both are desirable. If
we want students to experience and reflect upon
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induction, it mught be better not to offer them
Boundary — which, in turn, might be ideal for struc-
tural generalisation, and for discussion of different
but equivalent formulations of such a generalisa-
tion.® Last year, we began a workshop on
mathematical processes with Primary PGCE
students by inviting them to work on Painted cube.
Within minutes, many (by no means all) of them
had written things like 6(»-2)* and were asking
‘“What shall T do now?” They were not ‘being
difficult’; they were experiencing and demonstrating
structural generalisation. This year, we began with
Starrs. As a stimulus for experiencing and reflecting
on induction and (eventually) explanation, it was
much more effective.

Train spotting and ‘the formula’

[ began this article with a set of ‘ivestigation
starters’. How subversive I felt in the 1970s, working
with such material in the classroom! Time has
revealed the reason for my sense of unease:
Cockcroft has legitimised our activity, and said that
everybody should be doing it. Some of the teachers
who enthusiastically promoted the place of investi-
gational work in the curriculum have come to regret
the institutionalisation of investigation, not least
within GCSE coursework. The unexpected regular-
ity, the creativity and frisson of mathematical
discovery, has been forced into an algorithmic
mould: data-pattern-generalisation (and formula for
extra marks). Assessment has hardened the
paradigm. In her recent book, Candia Morgan has
addressed

...some of the tensions and contradictions

implicit in the official and practical discourse

[of ‘investigation’]. In particular, the ideals of

openness and creativity, once operationalised

through the provision of examples, advice
and assessment schemes, become predictable
and even develop into prescribed ways of
posing questions or ‘extending’ problems and

rigid algorithms for ‘doing investigations’ [13,

p73].

Dave Hewitt [14] has famously complained that
in children’s driven determination to tabulate
numerical data, ‘their attention is with the numbers
and is thus taken away from the original situation’. I
personally experience a sense of irritation when
students insist on an algebraic ‘formula’ — in the
form of a function fx) — for everything. The sense of
closure once they have it is palpable. Presumably,
they are the victims of GCSE coursework indoctri-
nation. My irritation stems, in part, from awareness
that a few students will be scared off by the formula,
and sense failure because they didn’t find it, or feel
anxiety because their undoubted rationality is frozen
by the sight of it. One reason I like to work on Stairs
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with students is that the sequence (Fibonacci) is
easily generated recursively, but the formula for the
nth term refuses to yield to difference tables and is
virtually inaccessible (though students still want to
know it!)

Conclusion

There are tensions here, didactic dilemmas. The
national trend is towards pedagogic uniformity, a
lesson structure and teaching styles that ‘work’ for
all teachers and almost all learners. It is far from
clear, on the evidence to date, whether or how this
will embrace inductive approaches to learning. In
any case, even the one-time proponents of investiga-
tion seem to be increasingly disillusioned. Are we,
therefore, to consign investigational work to the
dustbin of late twentieth century school-maths
history, along with multibase arithmetic? That would
be neither my conclusion nor my wish, notwith-
standing the distorting consequences of GCSE
assessment over the last decade. Indeed, I would fan
the flickering flame of Paragraph 243 [16], adding
four additional bullet points:

Investigational work at all levels should include
opportunities for:
e induction
e explanation
e empirical generalisation
e structural generalisation

So long as we hold onto belief in pupils’ entitle-
ment to experience and learn mathematcs, I would
want to emphasise and promote the centrality of
generalisation in the school mathematics curricu-
lum, and ‘investigation’ as a valuable and authentic
means whereby students might encounter and expe-
rience it.

Notes

1 Whewell personifies Induction and Deduction (like
the characters of Bunyan’s Pilgrism’s progress) as
though they were two characters inhabiting the mind
of the scientist. [t is gratifying to note, moreover, that
Whewell does not conform to the stereotype and make
Induction female (illogical, intuitive, uncertain, apt to
lead, to seduce her companion, capable of error) and
Deduction male (logical, secure, the steadying
influence on his partner). In Whewell’s text, both char-
acters are portrayed as female.

2 If I had to choose just one of my own articles to take to
a desert island, it would be [6].

3 In the case of Iurutons, nalve empiricism and confi-
dence in doubling can be challenged by working on a
different problem. Points are marked unevenly on the
boundary of a circle, and each point is joined to every
other point. How many regions are formed?

4 It makes much more sense simply to investigate sums
of divisors — try 2, 5 and then 10.

5 By ‘happy’ coincidence, an article on the topic [9]
appeared in the Mathematical Gazette in the same
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week that I submirtted the first draft of this article to
MT. Alan Beardon’s ingenious resolution of conjec-
tures about cycles and fixed points confirmed what I
had suspected: that this is fascinating but non-elemen-
tary mathematics.

6 If N is even, halve it; otherwise multiply by 3 and add
1. Brian Thwaites’ prize of £1000 to anyone who can
prove (or refute) the conjecture — that every such
sequence is ultimately attracted to 1 — remains
unclaimed.

7 Liz first introduced the distinction and the terms in
her thesis [18].

8 See, for example, Bob Vertes’ handling of Picture
Frames (aka Boundary) with a Year 7 class, on the video
which accompanied Open University course EM235,
Developing mathematical thinking.
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Mathematics Teaching ¢ Micromath

Vacancy for Editors

During 1999, ATM will be choosing new editors for Mathematics Teaching and

also for Micromath.

The new editors will be responsible for issues from the beginning of 2001. The
appointments will be for three years, with an option to extend the contract to six years.

Mathematics Teaching is a quarterly journal and Micromath is issued three times a year.

A fee is paid for editorship: this is £1600 per issue.

It is expected that most applications will come from a team of two or more people for

each journal.

Anyone inferested in undertaking this role should contact the ATM office for further
information. Applications are expected in writing to ATM by 30th September 1999 and
interviews will be held at the ATM office in Derby during November 1999.
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