
Solution to Particularly General

For any real number x:

[(1− x)(1 + x+ x2 + x3) = 1 + x+ x2 + x3 − x− x2 − x3 − x4

⇔ (1− x)(1 + x+ x2 + x3) = 1− x4

For any real number x:

(1− x)((1 + x)(1 + x2)(1 + x4)) = (1− x2)(1 + x2)(1 + x4)

⇔ (1− x)((1 + x)(1 + x2)(1 + x4) = (1− x4)(1 + x4) = (1− x8)
For the last expression, we can first remember that for a a real number,

sin(2a) = 2cos(a)sin(a)

That’s why for sin(2a) 6= 0, cos(a) = sin(2a)
2sin(a)

Now we can evaluate the expression:
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Which is true only when sin( x
16 ) 6= 0⇔ x is not a multiple of 16π

Now that we have prove those three particular expressions, let’s evaluate the general forms.
We can make the assumption that: (1− x)(1 + x+ x2 + x3 + ...+ xn) = 1− xn+1

Let’s prove it. By developping, we notice:

(1− x)(1 + x+ x2 + x3 + ...+ xn) = 1 + x+ x2 + x3 + ...+ xn − x− x2 − x3 − xn+1 = 1− xn+1

And we get the answer.

Regarding (1−x)((1+x)(1+x2)(1+x4)...(1+x2
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)), we can make the assumption that it is equal to 1−x2n+1

.
Let’s prove this by induction. We have the statement P(n): (1− x)((1 + x)(1 + x2)(1 + x4)...(1 + x2
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For n = 0, (1− x)(1 + x) = (1− x2), then P(1) is true.
Let’s suppose P(n) is true.
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Then we get that if P(n) true, then P(n+1) is true, thus by the axiom of induction, we conclude:
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