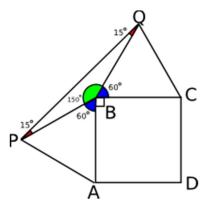


1. Robo-turn

The total angle turned through after each of the first 4 moves is 10°, 30°, 60°, and 100°. So the robot does not face due East at the end of a move in its first complete revolution. The total angle it has turned through after each of the next 5 moves is 150°, 210°, 280°, 360°, and 450°, so at the end of the 9th move the robot does face East. As the robot moves 5m in each move, the distance it travels is 45m.

2. Stellar angles


The four marked angles are the interior angles of a quadrilateral. Hence, $x = 360^{\circ} - (105^{\circ} + 115^{\circ} + 125^{\circ}) = 15^{\circ}$.

3. Two exterior triangles

Since *ABQ* and *BCQ* are equilateral, the angles *ABP* and *CBQ* are both 60°. So, $\angle PBQ = 360^{\circ} - 90^{\circ} - 60^{\circ} - 60^{\circ} = 150^{\circ}$

PBQ is isosceles, so the angles *BPQ* and *PQB* are equal. So, $2 \times \angle POB = 180^{\circ} - 150^{\circ} = 30^{\circ}$

Therefore, $\angle PQB = 15^{\circ}$.

These problems are adapted from UKMT Mathematical Challenge problems (ukmt.org.uk)

4. As long as possible

The length of AD must be less than 15cm, since 15cm would be its length if all four points lay in a straight line. However, by making angles ABC and BCD close to 180° , AD can be made close to 15 cm in length.

As the length of AD is a whole number of centimetres, its maximum value, therefore is 14cm.

5. Polygon cradle

As PQRST is a regular pentagon, each of its internal angles is 108°. The internal angles of the quadrilateral PRST add up to 360° and so, by symmetry, $\angle PRS = \angle RPT = \frac{1}{2}(360^\circ - 2 \times 108^\circ) = 72^\circ$. Each interior angle of a regular hexagon is 120°, so $\angle PRU = 120^\circ$.

Therefore, $\angle SRU = \angle PRU - \angle PRS = 120^{\circ} - 72^{\circ} = 48^{\circ}$.

These problems are adapted from UKMT Mathematical Challenge problems (ukmt.org.uk)