Odds and Evens

Imagine we play the game with *a* even numbered balls and *b* odd numbered balls.

Conjecture: *a* and *b* are consecutive triangle numbers.

Proof:

	a even	b odd
a even	a²-a	ab
b odd	ab	b^2 - b

For a fair game,

 $a^{2} - a + b^{2} - b = 2ab$ => $a^{2} - 2ab + b^{2} = a + b$ => $(a - b)^{2} = a + b$

This proves that:

the total number of balls has to be a square number

the difference between the number of odd and even balls is the square root of the total number of balls. Let the total number of balls be n^2 .

Then
$$a + b = n^2$$

and $a - b = n$

Adding the two equations:

$$2a = n^{2} + n$$

=> $a = \frac{1}{2} (n^{2} + n)$
=> $a = \frac{1}{2} n (n+1)$

This is the formula for the n^{th} triangular number, so a must be a triangular number.

Similarly, *b* is the $(n-1)^{th}$ triangular number.