Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Flashing Lights

Age 7 to 11
Challenge Level Yellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

(Thank you to Norrie McKay and the lights over Tokyo Bay for this problem)

There were many correct answers sent in for this problem. As Primary Maths Club (International School of Toulouse) pointed out, it helps if you start counting seconds from the first time the two lights flashed together (at zero seconds).

Some people thought about a number line, others looked for a number that both of the numbers of seconds (4 and 5) would divide into (common multiple). Here are two very well explained solutions.

Holly, Harriette, Caroline, Florence and Rebecca from The Mount School, York:

1st light 0 - 4 - 8 - 12 - 16 - 20 - 24 - ......
2nd light 0 - 5 - 10 - 15 - 20 - 25 - ........

They flash at the same time every 20 seconds 0 - 20 - 40 - 60
That's four times in all.

For two lights the pattern was every 20 seconds and 4 x 5 = 20
For the three lights it is going to be 4 x 5 x 7 = 140 seconds or 2 minutes 20 seconds


Christina from Marlborough Primary School :

To work this out you need to find a multiple of both 5 and 4 which is 20. So the lights flash together every 20 seconds and to find out how many times they flash in one minute you need to do 60/20 = 3 which means that they flash together 3 times a minute.

You need to find a multiple of 20 and seven to work out how many minutes before all of the lights flash together. 20 x 7 = 140 sec = 2 mins 20 sec

Well done to all of the following people: Jesse, Edward, Daniel and Thomas from Tattingstone School who did some very good work with finding the multiples. Lily from Sotogrande International School, Daniel from Anglo-Chinese School, Singapore, Abigail, Charles and David from Moorgate Primary School, Staffordshire, Jason from Priory School, Thomas from St Francis School, Maldon and Ashley.


You may also like

Pebbles

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Sweets in a Box

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo