Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cut-up Square

Age 14 to 16
ShortChallenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Solutions

First, we label the corners of the square, the midpoint, and the point at which the two lines intersect $A$, $B$, $C$, $D$, $E$ and$F$ respectively. We also label the four triangles created within the square as 1, 2, 3 and 4.

Call the area of triangle a.

Angle $AFD$ is equal to angle $EFC$ as they are vertically opposite, and angle $FAD$ is equal to angle $FCD$ as they are alternate. So, triangles 1 and 3 are similar. As $E$ marks the midpoint of a side of the square, length $CE$ is half the value of length $AD$.

This means that the area of triangle 3 is equal to 4a, as its base and height are double that of triangle 1. 

It also means that length $AF$ is equal to twice the value of length $FC$. If we let $AF$ be the base of triangle 3 and $FC$ be the base of triangle 2, then these triangles have the same height (equal to the perpendicular distance from $D$ to the line $AF$) so the area of triangle 2 is equal to half that of triangle 3 - that is, 2a.

As line $AC$ is a diagonal, the combined areas of triangles 2 and 3 is equal to half the area of the square. 4a + 2a = 6a, so the square has a total area of 12a. The combined area of triangle 1 and triangle 4 is then also 6a. As we have defined the area of triangle 1 as a, we then know that triangle 4 has an area of 5a.

As the ratio of $P:Q$ is simply the ratio area of triangle 2:area of triangle 4, we then know that this ratio is 2a:5a=2:5.

This problem is taken from the UKMT Mathematical Challenges.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo