Or search by topic
Published 2013 Revised 2019
Many teachers that I have worked with over the course of the last year have been confused about what manipulatives to use in specific contexts and I have seen quite a bit of practice where one specific manipulative might appear to teach a given concept and then disappear never to be seen again in the classroom. For
children this can make the practical apparatus rather mystifying and encourage them to think that each manipulative has a specific function in relation to a specific task: we use beads strings to count forward and backwards on a number line but then swap to using a hundred square to count in steps of 10. This might well mean that children become confused about the ways in which each manipulative
reflects aspects of the number system and to see it solely as an adjunct to following a specific procedure. (For an alternative approach to the hundred square that looks at its structure and meaning you could try this task: 100 Square Jigsaw.) This article is written to try to address some of this confusion and to offer research based guidance about the use of
manipulatives in the classroom. As such it will only offer you, as practitioners, a start but I hope it will empower you to examine your own practice and examine the ways in which you use manipulatives with children. I will, as always, be pleased to hear how you get on. My own work depends on receiving this kind of feedback and you can contact me through NRICH.
The history of the use of manipulatives in the classroom goes back over fifty years. A succinct historical summary of this is offered by Patricia Moyer (2001). She comments on Jean Piaget's (1951) work which suggested that children aged seven to ten years old work in primarily concrete ways and
that the abstract notions of mathematics may only be accessible to them through embodiment in practical resources. This was later built on by Zoltan Dienes (1969) who developed his base apparatus, and Caleb Gattegno and Georges Cuisenaire (1954) with their development of Cuisenaire rods. An activity using Cuisenaire rod in similar ways to those Gattegno and Cuisenaire advocate can be found
here: Same Length Trains. Jerome Bruner's (1966) elaboration of enactive, iconic and symbolic modes of working draws further attention to the role of the concrete and representational in progress towards abstract work in symbolic realms. More recent work in the 80s and 90s develops this further using constructivist theories to develop ideas of learning which
see the learner as constructing their own meanings relating concrete manipulatives to the abstract symbols in ways that make sense to them. Moyer (2001) points out that:

