Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

What Could It Be?

Age 5 to 7
Challenge Level Yellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

What Could It Be?

What Could It Be? printable sheet

In the calculation below, the box represents a missing digit:



What could go in the box? What would the total be each time?

Which is the highest/lowest total?

Which totals are odd/even?


Why do this activity?

This activity provides an opportunity for children to practise their addition skills through a meaningful open-ended task. It encourages children to record their results, notice patterns and make predictions.

Possible approach

A possible starting point is to begin with a question such as 3+__= and ask the class to come up with what it could be. The box represents one missing digit. The children should be encouraged to come up with as many answers as possible. How will you know when you've found them all? As the possibilities are collated, these could be organised systematically so that the children notice the pattern:
3 + 0 = 3
3 + 1 = 4
3 + 2 = 5
3 + 3 = 6 and so on.
It is possible to draw out which totals are odd/even, which is the highest/lowest total, which totals are single digit numbers and so on.

Children can then be set a similar challenge working within 20 or could move on to the original problem. Some children may start with or move onto the extension tasks (below).

Key questions

Which numbers have you added?
What totals were possible?
Which is the highest/lowest total?
Which totals are odd/even? Could you have predicted this?
Are there different ways of getting to the same total?
 

Possible extensions

Extension 1:
1__ + 1__ =     This time there are two boxes and each represents a missing digit.
What could go in the box? What if the missing digits are the same, what if they are different? What would the total be each time? Which is the highest/lowest total?
Can you find two different ways of getting the same total but using different digits?

Extension 2:
Make up your own similar problem.

Possible support

Whatever resources are being used to support the development of addition skills are appropriate to use for this challenge. For example: a 100 square, a number line or track, a bead string, Diennes (base 10) apparatus, etc.

Related Collections

  • Back to NRICH at Every Stage resources

You may also like

Three Squares

What is the greatest number of squares you can make by overlapping three squares?

Two Dice

Find all the numbers that can be made by adding the dots on two dice.

Biscuit Decorations

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo