Or search by topic
We received a lot of responses to this problem - thank you to everyone who got in touch. Abdurraheem from Malmesbury Primary said:
North and south are opposites, AND they flew in those directions for the same amount of time, so they don't matter.You have thought very logically here, Abdurraheem. Well done.
Many of you drew the route that the bird takes, which is a very efficient way of solving the problem. Someone who didn't give their name or school sent in this image which is very helpful:
Christina, Amy and Keira from Dr Challenor's High School did the same thing and explained their reasoning:
South east for $50$ minutes.Joshua and James from Thornton Dale C of E Primary School used a similar method but they decided to draw the route to scale rather than sketch it. They describe what they did:
We drew out the bird course with $20$ minutes being $2$cm and $50$ minutes being $5$cm. Also we drew a compass showing north, north-east, east, south-east, south, south-west, west and north-west. After plotting the course we worked out which direction it was back to the beginning and measured the gap and put it into minutes.Daniel from Mount Pleasant Junior School described what he did very succinctly:
The answer is south east for fifty minutes. Here's how I did it:Children from the Challenge Club at Pipers Corner School wrote to say:
We thought of two solutions:Well done! I guess the problem didn't actually ask for the shortest way back so you're right, the bird could have gone back the way it came. In fact, there could, therefore, be many, many other solutions!
Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?
Looking at the 2012 Olympic Medal table, can you see how the data is organised? Could the results be presented differently to give another nation the top place?