Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

A Bit of a Dicey Problem

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

A Bit of a Dicey Problem


2dice

Look at these two dice. If you add together the numbers of dots on them, the total is $2$.
When you roll two ordinary six-faced dice like these and add together the two numbers, what results could you get?

Do you have more chance of getting one answer than any other?

If so, what is that answer?  And why?

What if you use a dice with $10$ numbers on, like these?

Deca Dice

What answers could you get now?
Do you have more chance of getting one answer than any other?
If so, what is that answer?  And why?

Now try with more dice or a mixture of dice. What do you notice now?
 


Why do this problem?

This problem gives plenty of chance for practising addition in a meaningful context whilst avoiding the monotony of doing a set of written calculations. As the context is an investigative one, the teacher will have plenty of opportunity to observe the children at work and assess their skills, with addition in the first instance. However, subtraction and multiplication may also be possible if you change the operation in the question. The game is also an opportunity to model working systematically.

Possible approach

This is a low threshold high ceiling activity that would be suitable for a range of pupils and enable them all to be working on the same activity but using different skills to reach their conclusions.
Introduce the task by getting the children to throw two dice in pairs with one throwing the dice and one recording the results. If each pair in the class records their results for 5 throws then collectively they can make a conjecture about what the outcomes may be.
After a number of trials they may be willing to make a hypothesis about the most likely result. It is important to press them to offer a rationale for their choice at this stage. They may be willing to justify their choice on the basis of an argument that doesn't involve collecting lots of examples or they may only be prepared to use the evidence that they have gathered.
They could record their arguments and justifications by using a video camera, or on paper and then share them with the rest of the class at intervals during the lesson.

Key questions

What results can you make?
How can you be sure you have considered all the possibilities?
Are you getting one result more often than the others?
What do you notice about the number of 1s, 2s, 3s,... that you have?

Possible extension

Consider other operations such as the difference between the numbers or the total on the white die subtract the total on the black die. What possible results would these give? Why? Which would be the most likely now?
Consider other polyhedra dice or a mix of different dice.
What about dice that have different sets of numbers on them, such as a six sided dice having 2,4,6,8,10,12 on the faces?

Possible support

Some children will need to spend longer convincing themselves about the possible answers to the addition sums and even to use apparatus to help them. Allow them the time to do so. If children work in pairs then this often helps them to articulate their thinking to one another, which will help them both. The child who has 'got it' will clarify their thinking as they explain. The one who hasn't should be encouraged to ask questions until they do understand. It is the repsonsibility of them both to ensure that they are secure in their understanding of what they are doing.
 





Related Collections

  • Playing with Dice

You may also like

Roll These Dice

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

Bipin's Choice

Bipin is in a game show and he has picked a red ball out of 10 balls. He wins a large sum of money, but can you use the information to decided what he should do next?

Trick or Treat

Mrs. Smith had emptied packets of chocolate-covered mice, plastic frogs and gummi-worms into a cauldron for treats. What treat is Trixie most likely to pick out?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo