Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Teddy Town

Age 5 to 11
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

In Teddy Town, teddies are either red or yellow and they live in red or yellow houses. There are 4 teddies - 2 red and 2 yellow, and 4 houses - 2 red and 2 yellow.

Can you match each teddy to a house so that the 4 pairs are all different from each other?

Imagine now that there are 3 different colours of teddies and houses - red, yellow and blue. In Teddy Town there are now 9 teddies and 9 houses. All 9 pairs of houses and teddies are different from each other.

Here is a map showing Teddy Town:

The streets are very special. If you walk along a street from east to west, or west to east, all the houses are a different colour and the teddies living in the houses are a different colour too. The same is true if you walk along the streets in a north-south or south-north direction.

In other words, looking at the map grid, each row and column must have different coloured houses and different coloured teddies.

Can you arrange the houses and teddies on the map grid, making sure that all 9 pairs of houses and teddies are different from each other?

Teddy Town is expanding rapidly as green teddies move to the area and green houses are built. Now there are 16 teddies and 16 houses.

There are 16 different ways to combine the teddies and houses. How could these 16 households be organised on the map now? Remember that in each row and column there must be both different coloured houses and teddies.

Now... yes, you've guessed it. Another colour of teddy bear has moved to Teddy Town. As well as red, yellow, blue and green teddies there are now purple teddies. Of course, this means that purple houses will have to be built. So, now in Teddy Town there are 5 of each colour bear, making 25 teddies in all, and also 25 houses, again 5 of each colour. 

Can you make the 25 different combinations of teddy and house now? Arrange these on the street map below in the same way as before:



Teddy Town is becoming very overcrowded! However, there is just enough room for some turquoise teddies to join. Living there now are 36 teddy bears: 6 red, 6 yellow, 6 blue, 6 green, 6 purple and 6 turquoise. There are 36 houses for them to live in: 6 red, 6 yellow, 6 blue, 6 green, 6 purple and 6 turquoise. 

Make the 36 combinations of teddies and houses. Do you think it will be possible to put these 36 combinations in the street grid? Maybe it won't be. Have a go!

Now, look back at what you have done and ask yourself some of these questions:

  • Was it easier to arrange the combinations in some of the grid sizes compared with others?
  • Why do you think this is?
  • What was your strategy for solving the arrangement puzzle each time?
  • What would happen if the two diagonals on the map also had to have different coloured houses and different coloured teddies? Can you solve the problem for each street plan now?

Printable NRICH Roadshow resource. 
 

Acknowledgements

This activity is based on a Bernard's Bag problem from December 1997 called Tea Cups. The idea for the teddies came from Andrew Massey who is an Advisor for Worcestershire County Council. Thank you! 

Related Collections

  • Back to The Problem with Problem Solving
  • A Daring Dozen

You may also like

Geoboards

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Polydron

This activity investigates how you might make squares and pentominoes from Polydron.

Multilink Cubes

If you had 36 cubes, what different cuboids could you make?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo