Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Four Goodness Sake

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
Primary curriculum
  • Problem
  • Student Solutions
  • Teachers' Resources

Four Goodness Sake


Fours.

Write down the number $4$, four times.
Put operation symbols between them so that you have a calculation.
So you might think of writing $4 \times 4 \times 4 - 4 = 60$

BUT use operations so that the answer is $12$

Now, can you redo this so that you get $15$, $16$ and $17$ for your answers?

Need more of a challenge? Try getting answers all the way from $0$ through to $10$.


Why do this problem?

This activity is excellent for getting pupils to use their knowledge and understanding of numbers and number operations in relation to the number $4$.

Possible approach

This is one of those problems that is harder than it looks. You could start off by presenting the question just as it is in the text. Alternatively start off by looking at all the different answers that can be gained by using just two $4$s and operation symbols first and building up to three and then four.
The children can see what answers they come up with and challenge one another to match the same solution. Challenging the children to find various numbers as solutions is interesting.

Key questions

How can you get the highest possible answer?
How can you get the lowest possible answer?
Tell me about the way you are finding answers.
Can you see what target numbers you can make?
Are there any numbers that you can't make using four fours and various operations?

Possible extension

Challenge the children to make all the numbers to $64$ with four $4$s. What are the gaps? Can we fill any of them by allowing some other operation or an additional four?
The children can also set their own extension challenges.

Possible support

Using two $4$s first of all gives an easy entry point into the task. How many different target numbers can you make with just two $4$s? Can you use what you have found with two $4$s to make some other target nunbers with three $4$s?


You may also like

Pebbles

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Sweets in a Box

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo