Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tangling and Untangling

  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


The mathematician John Conway developed an interesting problem about tangling ropes. He discovered that a pair of "tangling operations", twisting and turning, can be represented by a pair of simple arithmetical operations.

Twisting can be represented by adding 1:
$$x \rightarrow x+1$$

To represent turning, transform a number into the negative of its reciprocal:
$$x \rightarrow -\frac{1}{x}$$

Take a look at this video:


If you can't see the video read the description below:

This is how the ropes got tangled:

Twist, twist, turn, twist, twist, twist, turn, twist, twist, twist, turn.

This is the sequence of numbers it produced:

0, 1, 2, -1/2, 1/2, 3/2, 5/2, -2/5, 3/5, 8/5, 13/5, -5/13...

and this is how they got untangled:

Twist, turn. twist, twist, turn. twist, twist, twist, turn, twist, twist, twist,

generating these numbers:

...8/13, -13/8, -5/8, 3/8, -8/3, -5/3, -2/3, 1/3, -3, -2, -1, 0.

 

Investigate tangles for yourself, with skipping ropes or string, or by creating sequences of fractions using the two operations.

There are lots of interesting mathematical questions to explore. Choose one of your own to work on or click below for some ideas:


Can you develop a strategy for untangling any tangled ropes, irrespective of the fraction you have ended up with?

Is it possible to start at 0 and end up at any fraction?
 

 

 

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo