Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Guess my Quad

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


Many thanks to all of you who submitted solutions to this problem: you've used several different methods. Many of you used flow charts to present your solutions, which made it very easy to see what questions you were asking depending on the answers to your previous questions.

Mariah, Georgia and April, from Hastings Secondary College, Australia, submitted this solution. They used the fact that their kite and arrowhead had right angles in them to arrange their questions.

These are their shapes, and their questions that they would ask:







Nathan, from Bishop Wordsworth's School, explained why three questions was the minimum that you would need to be able to work out what the quadrilateral is:

I realised that to get the smallest result, each question asked would have to halve the number of shapes left until you have the final shape. Therefore, the minimum amount of questions you could ask and certainly get a right answer is three: $8 \div 2 = 4$; $4 \div 2 = 2$ and $2 \div 2 = 1$, which makes a total of 3 questions.

He was also able to find a way to work out the shape using only three questions. He was able to do this without assuming any extra properties of the shapes:

 

 

Zach also had a flow chart to show his method:


 
He also extended this by adding some more shapes, which meant that he required four questions. He said that he needed eight new shapes, since each question halves the number of shapes. These are the shapes he added:
 

 
He then suggested this set of questions:
 

Thank you and well done to everyone who submitted a solution.

You may also like

Linkage

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

Making Rectangles, Making Squares

How many differently shaped rectangles can you build using these equilateral and isosceles triangles? Can you make a square?

The Cyclic Quadrilateral

This gives a short summary of the properties and theorems of cyclic quadrilaterals and links to some practical examples to be found elsewhere on the site.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo