Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Powerful Quadratics

Age 16 to 18
  • Problem
  • Getting Started
  • Student Solutions
Thank you to Maria from Hills Road Sixth Form College, Eleanor from The King's School in Macclesfield, Abi, and Rhombusta for submitting solutions to this problem!

Here's Abi's solution:


For equations of the form $(ax^2+bx+c)^{(dx^2+ex+f)}=1$, where $a,b,c,d,e,f$ and $x$ are real, there are three possibilities:
  • $ax^2+bx+c=1$, as $1^n=1$ for any $n$
  • $dx^2+ex+f=0$, as $n^0=1$ for any $n$
  • $ax^2+bx+c=-1$, and $dx^2+ex+f$ is an even integer, as $(-1)^{(2n)}=1$ for any integer $n$.
Now to solve the problems:

$i)$ 

Case $1$: $x^2-7x+11=1$ factorises as $(x-5)(x-2)=0$ so $x=5$ or $x=2$.
Case $2$: $x^2-11x+30=0$ factorises as $(x-5)(x-6)=0$, so $x=6$ or $x=5$.
Case $3$: $x^2-7x+11=-1$ factorises as $(x-3)(x-4)=0$. As $3^2-11(3)+30=6$ and $4^2-11(4)+30=2$ are both even, $x=3$ or $x=4$ are solutions.

So the solutions are $x=2,3,4,5$ and $6$.

$ii)$

Case $1$: $2-x^2=1$ factorises as $(1-x)(1+x)=0$ so $x=1$ or $x=-1$.
Case $2$: $x^2-3 \sqrt{2}x+4=0$ factorises as $(x-2 \sqrt{2})(x- \sqrt{2})$, so $x=2 \sqrt{2}$ or $x = \sqrt{2}$.
Case $3$: $2-x^2=-1$ factorises as $(\sqrt{3}-x)(\sqrt{3}-x)$, but as $\sqrt{3}^2-3 \sqrt{2} \sqrt{3} +4$ and $ \sqrt{3}^2-3 \sqrt{2} \sqrt{3} + 4$ are not even integers, these are invalid.

So the solutions are $x=-1,1, \sqrt{2}$ and $2 \sqrt{2}$.

You may also like

Discriminating

You're invited to decide whether statements about the number of solutions of a quadratic equation are always, sometimes or never true.

Factorisable Quadratics

This will encourage you to think about whether all quadratics can be factorised and to develop a better understanding of the effect that changing the coefficients has on the factorised form.

Which Quadratic?

In this activity you will need to work in a group to connect different representations of quadratics.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo