Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Circle of Apollonius... Coordinate Edition

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

This resource is from Underground Mathematics.
 

 


Two fixed points $A$ and $B$ lie in the plane, and the distance between them is $AB=2a$, where $a>0$.

A point $P$ moves in the plane so that the ratio of its distances from $A$ and $B$ is constant:
$$\frac{PA}{PB}=\lambda,$$
where $\lambda>0$.

 

 

  1. Can you sketch the locus of the point $P$ for different values of $\lambda$?
  2. Using Cartesian coordinates, work out (the equation of) the locus of $P$.

 

 

Suggestion


You may find it more straightforward to first work with specific values of $a$ and $\lambda$, say $a=2$ and $\lambda=3$.

 

 

 


 

 

Part 2


Now assuming that $\lambda\neq1$, find the radius and centre of the circle. What is the length of the tangent to this circle from the mid-point of $AB$? What shape is traced by the tangent as $\lambda$ varies?

 

 

Background


This circle is known as the circle of Apollonius, named after the Greek geometer Apollonius of Perga.

 

 

 

This is an Underground Mathematics resource.

Underground Mathematics is hosted by Cambridge Mathematics. The project was originally funded by a grant from the UK Department for Education to provide free web-based resources that support the teaching and learning of post-16 mathematics.

Visit the site at undergroundmathematics.org to find more resources, which also offer suggestions, solutions and teacher notes to help with their use in the classroom.

 

You may also like

Powerful Quadratics

This comes in two parts, with the first being less fiendish than the second. It’s great for practising both quadratics and laws of indices, and you can get a lot from making sure that you find all the solutions. For a real challenge (requiring a bit more knowledge), you could consider finding the complex solutions.

Discriminating

You're invited to decide whether statements about the number of solutions of a quadratic equation are always, sometimes or never true.

Factorisable Quadratics

This will encourage you to think about whether all quadratics can be factorised and to develop a better understanding of the effect that changing the coefficients has on the factorised form.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo