Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tessellating Quadrilaterals

  • Problem
This problem follows on from some of the ideas in Tessellating Triangles.

In this problem we're going to be thinking about tessellating different quadrilaterals.

It's quite easy to see how squares tessellate:



What about other types of quadrilaterals?

Have a go at drawing some quadrilaterals, and finding ways to make them tessellate (you can print off some square dotty paper, or some isometric dotty paper, and try drawing different quadrilaterals on it. You could also draw some quadrilaterals using this interactive). 

You might want to think about different types of quadrilaterals. For example, can you find a way to tessellate any parallellogram? What about a kite? Or a trapezium?

What do you notice about your tessellations?

Do all quadrilaterals tessellate?

If your answer is no, give an example of a quadrilateral which doesn't tessellate. Can you explain why it doesn't tessellate?

If your answer is yes, can you explain why all quadrilaterals tessellate, and can you give an algorithm which will produce a tessellation of any quadrilateral?

You might find the interactivity below useful for this: 



You can click and drag the corners of the quadrilateral to change its shape.

To produce a tessellation, you can find the midpoint between two points, rotate a shape around a point, and translate a shape by a given vector.

If you enjoyed this problem, why not have a look at Tessellating Hexagons?
  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo