Or search by topic
Adithya, Thomas, Minh, John and Fatemeh sent us solutions to problem 7. Here is Minh, John and Fatemeh's solution:
7) $\sin(2A)+\sin(2B)+\sin(2C)=4\sin A \sin B \sin C$
IDENTITY
Starting with the left hand side:
$$\begin{align}
\sin 2A + \sin 2B +\sin 2C &\equiv \sin 2A + \sin 2B + \sin (360^\circ - 2(A+B)) \\
&\equiv \sin 2A + \sin 2B + \sin 360^\circ \cos(-2(A+B)) \\
&\ + \cos360^\circ \sin (-2(A+B)) \\
&\equiv \sin 2A + \sin 2B + 0 \times \cos(-2(A+B))+ 1\times \sin (-2(A+B)) \\
&\equiv \sin 2A + \sin 2B + \sin (-2(A+B)) \\
&\equiv \sin 2A + \sin 2B - \sin (2(A+B)) \\
&\equiv \sin 2A + \sin 2B - (\sin 2A \cos 2B + \sin 2B \cos 2A) \\
&\equiv \sin 2A (1-\cos2B) + \sin 2B (1-\cos2A) \\
&\equiv \sin 2A (\cos^2 B+\sin^2 B - \cos^2 B + \sin^2 B) \\
&\ + \sin 2B (\cos^2 A+\sin^2 A - \cos^2 A + \sin^2 A) \\
&\equiv \sin 2A (2\sin^2 B) + \sin 2B (2\sin^2 A) \\
&\equiv 2 \sin 2A \sin^2 B + 2 \sin 2B \sin^2 A
\end{align}$$Then looking at the right-hand side:
$$\begin{align}
4\sin A \sin B \sin C &\equiv 4\sin A \sin B \sin (180^\circ -(A+B)) \\
&\equiv 4\sin A \sin B (\sin 360^\circ \cos(-(A+B)) + \cos180^\circ \sin (-(A+B))) \\
&\equiv 4\sin A \sin B (0 \times \cos(-(A+B)) + (-1)\times \sin (-(A+B))) \\
&\equiv 4\sin A \sin B \sin (A+B) \\
&\equiv 4\sin A \sin B (\sin A \cos B + \sin B \cos A) \\
&\equiv 4\sin^2 A \sin B \cos B + 4\sin A \cos A \sin^2 B \\
&\equiv 4\sin^2 A \frac{1}{2}\sin 2B + 4 \left( \frac{1}{2} \sin 2A \right) \sin^2 B \\
&\equiv 2\sin^2 A \sin 2B + 2\sin 2A \sin^2 B \\
&\equiv 2\sin 2A \sin^2 B + 2\sin 2B \sin^2 A
\end{align}$$So the left-hand side is identical to the right-hand side, so we have an identity.
Thomas used a different method to solve this problem. Here is his solution:
The first two terms of the LHS are $\sin(2A)+\sin(2B)$ which is the sum of sines, so we can use the formula
$$\sin x +\sin y =2\sin(\frac{x+y}{2})\cos(\frac{x-y}{2})$$
and the double angle formula, $\sin(2x) \equiv 2\sin x \cos x$, on the final term to give
$$\sin(2A)+\sin(2B)+\sin(2C) \equiv2\sin(A+B)\cos(A-B)+2\sin C \cos C$$
We know that $A+B+C=180^\circ$, so $A+B=180^\circ-C$
$$\qquad\qquad\qquad\qquad\qquad\qquad\quad \equiv2\sin(180-C)\cos(A-B)+2\sin C \cos C$$
and we also know that $\sin(180-x)=\sin(x)$, so we have
$$\qquad\qquad\qquad\quad \equiv 2\sin C(\cos(A-B)+\cos C)$$
Then we can further simplify the RHS by using the sum of cosines formula, that $A+B+C=180^\circ$ and that $\cos (-x)=\cos x$
$$\begin{align}
\cos(A-B)+\cos C &\equiv (2\cos(\frac{A-B+C}{2}) \cos(\frac{A-B-C}{2}) \\
&\equiv 2\cos(\frac{A+C-B}{2}) \cos(\frac{A-(B+C)}{2}) \\
&\equiv 2\cos(\frac{180-B-B}{2}) \cos(\frac{A-(180-A)}{2}) \\
&\equiv 2\cos(\frac{180-2B}{2}) \cos(\frac{2A-180}{2}) \\
&\equiv 2\cos(90-B) \cos(A-90) \\
&\equiv 2\cos(90-B) \cos(90-A)
\end{align}$$
Finally we have that $\cos(90-x)=\sin(x)$, so we have proved the identity since we now have:
$$\begin{align}
\sin(2A)+\sin(2B)+\sin(2C) &\equiv 2\sin(C) \times 2\sin(B)\sin(A) \\
&\equiv 4\sin(A)\sin(B)\sin(C)
\end{align}$$
So we know which problems are equations and which are identities. We also know for which values problem 4 is true. Can you find the values for which problems 2 and 6 are true?
This comes in two parts, with the first being less fiendish than the second. It’s great for practising both quadratics and laws of indices, and you can get a lot from making sure that you find all the solutions. For a real challenge (requiring a bit more knowledge), you could consider finding the complex solutions.
You're invited to decide whether statements about the number of solutions of a quadratic equation are always, sometimes or never true.
This will encourage you to think about whether all quadratics can be factorised and to develop a better understanding of the effect that changing the coefficients has on the factorised form.