Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Dice Stairs

Age 7 to 11
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

This challenge involves making a 'dice stair' with three steps, as in the picture:


This is how you make a dice stair:

1. Take six dice.
2. Place the dice in three towers: a tower of one, a tower of two and a tower of three. 
    Each pair of dice faces that touch will only 'stick' if they are matching numbers. 
3. Place the towers in the staircase format.
    Each pair of dice faces that now touch will only 'stick' if they are matching numbers.
4. The top faces of the dice that make the 'steps' must now show three consecutive numbers in ascending order for this arrangement to be a dice stair.
For example, in the picture above, the top face of the blue dice and the bottom face of the red dice both have matching 3s. The left hand side of the blue dice and the right hand side of the green dice have matching 6s and the bottom of the blue dice has a 4 that matches the top of the white dice. Similar matching is true for all the other dice faces that touch. 


CHALLENGE ONE - three steps and six dice
  • Make some sets of dice stairs, as described above.
  • What do you notice as you explore how to make dice stairs?
  • Explain how you found your dice stairs.
  • How do you know that you have found them all? 

CHALLENGE TWO - four steps and ten dice 
  • Try the challenge above using four more dice to make dice stairs.
  • How have you used what you learnt using six dice?
  • How do you know that you have found all the dice stairs arrangements? 
     
CHALLENGE THREE - beyond four steps 

What insights do you have that would help you to try to make dice stairs that have five steps?

Justify whatever conclusions you come to when you set out to make your five-step stairs.
 

You may also like

Counting Counters

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Cuisenaire Squares

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Doplication

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo