Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Grandma's Cake

Age 11 to 14
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions

Answer: 30, if the slices are all the same size
10, if the slices can be differently sized

Grandma needs to have a number of pieces of cake that is divisible by $3$, $5$ and $6$. The smallest such number will be the Lowest Common Multiple of these numbers.

$3$ and $5$ are prime numbers, whilst $6$ factorises as $2 \times 3$. The lowest common multiple will therefore have prime factorisation $2 \times 3 \times 5$.

This means the lowest common multiple will be $30$, so Grandma should cut her cake into $30$ pieces.

Michael Hatch sent us two alternative solutions:

As the wording of the question states each child must have the same AMOUNT of cake, not the same number of slices, and there is also no condition that the pieces need to be cut into the same sized slices, this creates a different solution.

Only 10 slices of cake are needed: 5 slices of $60^\circ$ and 5 slices of $12^\circ$.

     3 grandchildren: 2 have 2 slices of $60^\circ$, 1 has 1 slice of $60^\circ$ and 5 slices of $12^\circ$.
     5 grandchildren: each has 1 slice of $60^\circ$ and 1 slice of $12^\circ$.
     6 grandchildren: 5 have 1 slice of $60^\circ$ and 1 has 5 slices of $12^\circ$.

Fred also suggested a way of cutting the cake into just 10 slices:
 



This problem is taken from the UKMT Mathematical Challenges.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Calendar Capers

Choose any three by three square of dates on a calendar page...

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo