Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Angle Please

Age 11 to 14
ShortChallenge Level Yellow star
Secondary curriculum
  • Problem
  • Solutions


There are two different ways of calculating the angle $x$.


The first method is as follows:

 The blue angle can be calculated since angles on a straight line add to $180^\circ$. This means it is $180^\circ - 100^\circ = 80^\circ$.

The orange angle can be calculated similarly, to be $180^\circ - 93^\circ = 87^\circ$.

The green angle can then be calculated since the angles in the top-left triangle add up to $180^\circ$. This is $180^\circ - 80^\circ - 58^\circ = 42^\circ$.

The green and red angles are opposite angles. This means that they are equal, so the red angle is also $42^\circ$.

Then, the angles in the left-hand triangle must add up to $180^\circ$, so $x^\circ = 180^\circ - 42^\circ - 87^\circ= 51^\circ$.



The other method involves looking at the farthest right angle in the diagram.

The angles in the red and purple triangle must add up to $180^\circ$, so the green angle is $180^\circ - 58^\circ - 93^\circ = 29^\circ$.

Then, the angles in the blue triangle must also add up to $180^\circ$. Therefore, $x^\circ = 180^\circ - 29^\circ - 100^\circ = 51^\circ$.





This problem is taken from the UKMT Mathematical Challenges.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Calendar Capers

Choose any three by three square of dates on a calendar page...

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo