Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Inscribed Semicircle

Age 14 to 16
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions


There are a number of different possible ways of solving this problem, which are presented below.

Solution 1

Since the semicircle touches the line $AB$, it is tangent there, so $\angle DEA = 90^\circ$. But then $\angle EAD = \angle CAB$, as these are the same angle. This means the triangles $ADE$ and $ABC$ are similar.

If the radius of the semicircle is $r$, then $DE = DC = r$ and $AD = 12-r$. Then, similarity says that:
$\frac{AB}{BC} = \frac{AD}{DE}$

Therefore:
$\frac{13}{5}=\frac{12-r}{r}$

Clearing the denominators gives:
$13r = 5(12-r)$

Expanding the brackets and collecting like terms gives:
$18r = 60$

Therefore, $r = 3\frac{1}{3} \text{cm}$.


Solution 2

Again, write $r$ for the radius of the semicircle.

As in solution 1, we can prove that $ADE$ is similar to $ABC$. Since the semicircle touches the line $AB$, it is tangent there, so $\angle DEA = 90^\circ$. But then $\angle EAD = \angle CAB$, as these are the same angle. This means the triangles $ADE$ and $ABC$ are similar.

Then, since $\angle DCB$ is a right angle, also, $CB$ and $EB$ are both tangents of the semicircle. Since they intersect, $EB = CB = 5$, so $AE = 13-5=8$.

Then, similarity says:
$\frac{DE}{AE}=\frac{BC}{AC}$

Therefore:
$\frac{r}{8}=\frac{5}{12}$

Multiplying by $8$ gives:
$r = \frac{40}{12} = 3\frac{1}{3}$

This means the semicircle has radius $3\frac 13 \text{cm}$.


Solution 3

This approach uses Pythagoras' theorem, rather than similarity, to solve the problem. Write $r$ for the radius of the semicircle.
 

Since $AB$ is tangent to the semicircle at $E$, $\angle AED$ is a right angle.

Also, as $BC$ is tangent to the semicircle at $C$, as $\angle ACD$ is a right angle, the lengths $BC$ and $BE$ are the same length, so both are $5\text{cm}$.

This then means that $AE = 8$, $DE = r$ and $AD = 12-r$.

Now, Pythagoras' theorem says that, since $\angle AED$ is a right angle:
$AD^2 = AE^2 + DE^2$

That is:
$(12-r)^2 = 8^2 + r^2$

Expanding the brackets gives:
$r^2 - 24r+144 = r^2 + 64$

Then, cancelling terms gives:
$24r = 80$

Therefore, $r = \frac{24}{80} = 3\frac 13$, so the radius of the semicircle is $3\frac 13\text{cm}$.

 
This problem is taken from the UKMT Mathematical Challenges.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo