Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Paired Parabolas

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions

Thank you to Minhaj from St Ivo School for his well explained solution to this problem which is given below.

What's the same and what's different about the following pairs of equations?

After rearranging to make $y$ the subject in each equation, it can be seen that for all the parabola pairs, the equations are reflections of each other with the line of reflection being the $x$ axis. So if we defined the first parabola of any of the pairs as $f(x)$, the second parabola would be $-f(x)$.

The obvious features of the equations are that they are all quadratic equations, and they all also revolve around the difference of two squares- in other words for $y= a x^2+b x+c$, $b x=0$. So for example, number 1, $y=x^2-4$, can be written as $y=(x+2)(x-2)$ and $y=4-x^2$ can be written as $y=-(x+2)(x-2)$.

The equation of the pair of the first parabola:

First I will find the equation of this red parabola. It can be seen that this is also an example of difference of two squares so the equation would be $y= x^2-12$ coming from $y=(x+2\sqrt{3})(x-2\sqrt{3})$. So I would guess that the “pair” of this quadratic would have an equation which would show the reflection of this parabola through the $x$ axis: $y=-(x^2-12)$ so $y=12-x^2$ is the equation of the pair.

The equation of the pair of the second parabola:

First of all, this isn't the conventional quadratic with $y=”¦.$ But it is $x=”¦$ (sideways parabola?). The roots of this graph on the $y$ axis are $\frac{1}{3}$ and $\frac{-1}{3}$ so again it is related to the difference of two squares: $x=(y+\frac{1}{3})(y-\frac{1}{3})$- however this isn't quite the correct equation of this parabola as the graph crosses the $x$ axis when $x=-1$ and not when $x= -\frac{1}{9}$. This means there is a scale factor involved and to find this we do $(-1)/(\frac{-1}{9})=9$. So the actual equation is $x=9(y+\frac{1}{3})(y-\frac{1}{3})= 9y^2-1$. This means the equation of the pair of this graph is $x=1-9y^2$.

You may also like

Powerful Quadratics

This comes in two parts, with the first being less fiendish than the second. It’s great for practising both quadratics and laws of indices, and you can get a lot from making sure that you find all the solutions. For a real challenge (requiring a bit more knowledge), you could consider finding the complex solutions.

Discriminating

You're invited to decide whether statements about the number of solutions of a quadratic equation are always, sometimes or never true.

Factorisable Quadratics

This will encourage you to think about whether all quadratics can be factorised and to develop a better understanding of the effect that changing the coefficients has on the factorised form.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo