Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Counting Counters

Age 7 to 11
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Jade from Coombe Girls School and Rohaan from North Cross Intermediate correctly spotted the pattern in the number of counters in each ring:



Every ring you add, you are just adding $6$ more counters than the previous ring.
Circle number excluding the counter in the middle $\times6 = $number of counters in that particular layer

Volkan and other pupils at FMV Ozel Erenkoy Isik Primary solved the second part of the problem:


At the end of the third layer, there are; $1+6+12=19$ counters.

At the end of the fourth layer, there are; $19+(3\times6)=37$ counters.

At the end of the seventh layer, there are; $37+(15\times6)=127$ counters.

At the end of the ninth layer, there are; $127+(15\times6)=217$ counters.

Some people solved this part by numbering the counters, starting from one in the middle and counting outwards. Thank you for sending in your solutions!


You may also like

Tangrams

Can you make five differently sized squares from the interactive tangram pieces?

Polydron

This activity investigates how you might make squares and pentominoes from Polydron.

Construct-o-straws

Make a cube out of straws and have a go at this practical challenge.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo