Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Open Squares

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources
 
For these challenges, we are going to find the total number of small cubes used to make different models that we will call open squares.
Here are the first five open squares:
 

 

(Note that although they are all called 'open squares' the first two are not actually open, but we will still use them in these challenges.)

What would the next five open squares look like?
How many small cubes would each one use?
 

CHALLENGE 1


Using two, three or four of the first ten open squares, your challenge is to make totals (of little cubes) between 50 and 60 (not including 50 or 60).

You can only use one of any size open square in each total you make, for example 16 + 36 = 52 is right but 4 + 4 + 8 + 36 = 52 is not allowed because it used two 4s.

If there are some totals between 50 and 60 you cannot make, explain why that is so.


CHALLENGE 2


We now stack the open squares up to make hollow pyramids, each open square resting on the one that is the next size bigger.

We can use just the first six hollow pyramids.  Here are the first five, you will also need to consider the sixth:


 

This time your challenge is to use one, two, three or four hollow pyramids and to find the total number of cubes used.  However, you cannot use two of the same pyramid in any total.

Can you find a way to make all totals up to and including 59 small cubes? 

If there are some totals you cannot make, can you explain why?

You may also like

Prompt Cards

These two group activities use mathematical reasoning - one is numerical, one geometric.

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Exploring Wild & Wonderful Number Patterns

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo