Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cuboid Faces

Age 11 to 14
ShortChallenge Level Yellow star
Secondary curriculum
  • Problem
  • Solutions
Working out the lengths of the edges

From this diagram, we can see that:
  • the length of the yellow edge multiplied by the length of the blue edge must be 12
  • the length of the red edge multiplied by the length of the blue edge must be 18
  • the length of the yellow edge multiplied by the length of the red edge must be 24.
We can start by thinking of two numbers that multiply to get 12, and then choose the right number to make the purple face have an area of 18 square centimetres. Then we can check whether those numbers give us the correct area for the orange face.

If the yellow edge is 6 cm long and the blue edge is 2 cm long, then the red edge must be 9 cm long, because 2$\times$9 = 18. However, then the orange face would have area 6$\times$9 = 54 square centimetres, which is not right.
If the yellow edge is 2 cm long and the blue edge is 6 cm long, then the red edge must be 3 cm long, because 6$\times$3 = 18. However, then the orange face would have area 2$\times$3 = 6 square centimetres, which is not right.
If the yellow edge is 4 cm long and the blue edge is 3 cm long, then the red edge must be 6 cm long, because 3$\times$6 = 18. Then the orange face would have area 4$\times$6 = 24 square centimetres, which is right.
So the edges of the cuboid are 3 cm, 4 cm and 6 cm long, which means the volume of the cuboid is 3$\times$4$\times$6 = 72 cm$^3$.

Using algebra to find the lengths of the edges
 
If we call the lengths of the edges $a$, $b$ and $c$, then $ab=12$, $ac=18$ and $bc=24$.

From here, we can use a trial approach to work out $a$, $b$ and $c$ similar to the method described above, or we can solve these equations, as shown below.

Since $ab=12$, we can say that $a=\dfrac{12}{b}$.

Substituting into $ac=18$, we get $\dfrac{12}{b}\times c=18$. Rearranging, $12c=18b$, so $c=\dfrac{18b}{12}=\dfrac{3b}{2}$.

Substituting into $bc=24$ now gives $b\times\dfrac{3b}{2}=24$, so $\dfrac{3b^{2}}{2}=24$, so $b^{2}=16$, so $b=4$.

So $a=\dfrac{12}{4}=3$ and $c=\dfrac{3\times4}{2}=6$.

So the volume, given by $abc$, is equal to $3\times4\times6=72$ cm$^3$.

Using algebra to find the volume directly
As in the picture above, we can call the lengths of the edges $a$, $b$ and $c$. So $ab=12$, $ac=18$ and $bc=24$.

We want the volume of the cuboid, $V=abc$.

Notice that $ab\times ac\times bc=a^2b^2c^2=(abc)^2=V^2$.
So $12\times18\times24=V^2$.
So $V=\sqrt{12\times18\times24}=72$.
So the volume is $72$ cm$^3$.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Hallway Borders

What are the possible dimensions of a rectangular hallway if the number of tiles around the perimeter is exactly half the total number of tiles?

Square Pegs

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Boxed In

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo