Balancing numbers at each end
Adding from 1 will be the same as adding from 20
Use up the large numbers by balancing them with little numbers
20=4\times5 so use 4 numbers close to 5 to make 20:
19=9+10
18=5+2+11
There aren't enough small numbers to make 17 so take 16 and 17 together =33
Use up the 8:\ \ \ 33-8=25=12+13
Which leaves 14+1=15
So the sum from 1 to 14 is the same as the sum from 15 to 20.
Adding up all of the numbers
10 pairs of numbers which add up to 21 \therefore sum of all 20 = 10\times21 = 210
Each sum is equal to 210\div2 = 105
Add up until 105 - quicker using larger numbers
20 + 20 + 20 + 20 + 20 = 5 less than 105
20 + 19 + 18 + 17 + 16 = 5 + 1 + 2 + 3 + 4 less than 105 = 15 less than 105
20 + 19 + ... + 15 = 105
n is 14
Comparing Milly's sum to1+2+3+4+...+20
Milly's and Billy's sums are equal and add up to 1+2+3+4+...+20, so Milly's sum must be equal to half of 1+2+3+4+...+20.
So \begin{split}1+2+3+4+...+n&=\dfrac{1+2+3+4+...+20}{2}\\&=\tfrac{1}{2}+\tfrac{2}{2}+\tfrac{3}{2}+\tfrac{4}{2}+...+\tfrac{20}{2}\\
&=\tfrac{1}{2}+1+1\tfrac{1}{2}+2+...+10\end{split}
Rewriting the right hand side to put the integers first, we can begin to subtract numbers from both sides: \begin{align}1+2+3+4+...+10+&11+...+n=1+2+3+...+10+\tfrac{1}{2}+1\tfrac{1}{2}+2\tfrac{1}{2}+...+9\tfrac{1}{2}\\\Rightarrow &11+...+n=\tfrac{1}{2}+1\tfrac{1}{2}+...+9\tfrac{1}{2}\end{align}
Now, looking at the right hand side, 1\frac{1}{2}+9\frac{1}{2}=11, so we can remove 11 from both sides of the equation: 12+...+n=\frac{1}{2}+2\frac{1}{2}+3\frac{1}{2}+4\frac{1}{2}+5\frac{1}{2}+6\frac{1}{2}+7\frac{1}{2}+8\frac{1}{2}.
Similarly, 3\frac{1}{2}+8\frac{1}{2}=12 and 5\frac{1}{2}+7\frac{1}{2}=13.
Removing those from the left and right hand side just leaves \frac{1}{2}+2\frac{1}{2}+4\frac{1}{2}+6\frac{1}{2} on the right hand side, which is equal to 14,
so n=14.
Using formulae
Using the formula that 1+2+3+...+r=\frac{1}{2}r(r+1) for any whole number r, Milly's sum is equal to \frac{1}{2}n(n+1) and 1+2+3+...+20=\frac{1}{2}20(21)=210.
Since Milly's and Billy's sums are equal and add up to 210, Milly's sum must be equal to half of 210, so \frac{1}{2}n(n+1)=105
\Rightarrow n(n+1)=210.
From here, you could find n using factorisation (210=2\times3\times5\times7=14\times15), or expand and solve the quadratic equation n^2+n-210=0 By factorisation (n-14)(n-15)=0\Rightarrow n=14 or n=-15, so n=14 since n is positive.
Using the quadratic formula
Let a=1,b=1,c=-210 and n=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}\begin{align}n&=\dfrac{-1\pm\sqrt{1--4\times1\times210}}{2}\\&=\dfrac{-1\pm\sqrt{841}}{2}\\&\dfrac{-1\pm29}{2}\end{align} Which gives
n=14 or n=-15, so n=14 since n is positive.