Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Octagonal Ratio

Age 14 to 16
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions
Dividing the octagon into rectangles and triangles

By drawing some extra lines you get this picture:
 
The red and green triangles are right-angled isosceles triangles with a hypotenuse equal to the side length of the octagon.

The blue and yellow triangles are also right-angled isoseles triangles, and as the central square's length is the same as the side lenght of the octagon, these triangles are congruent to the red and green triangles.

There is one rectangle and two triangles shaded in each of the four colours, so the four shaded areas are equal. Therefore the ratio of the shaded to unshaded parts of the original octagon is $1:3$.

Using the centre of the octagon

AE divides the octagon in half.
The green triangle is $\frac{1}{8}$ of the total area of the octagon.
Triangle ABE has the same base and twice the height, so twice the area, so is $\frac{1}{4}$ of the total area of the octagon.
So Trapezium BCDE is $\frac{1}{4}$ of the total area.

So the ratio is $1:3$. 
 


Finding areas of shapes
We can label the side length as $1$ since we are looking for ratios between areas, so it doesn't matter how big the octagon is. Three helpful shapes are drawn in. Finding their areas will enable us to find the areas of the shaded and unshaded parts of the octagon.


 The area of the red triangle is $\frac{1}{2}\times x\times x=\frac{1}{2}x^2.$ Applying Pythagoras' Theorem to the red triangle gives $x^2+x^2=1,$ so $x^2$ must be $\frac{1}{2},$ so $\frac{1}{2}x^2$ must be $\frac{1}{4}.$ So the area of the red triangle is $\frac{1}{4}.$



The area of the yellow rectangle is $1\times x=x.$ Since $x^2=\frac{1}{2},$ $x=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt2}.$ So the area of the yellow rectangle is $\frac{1}{\sqrt2}.$


  


 The area of the blue square is $1$.





 So the area of the shaded part of the octagon is $\frac{1}{4}+\frac{1}{\sqrt2}+\frac{1}{4}=\frac{1}{2}+\frac{1}{\sqrt2}$



 
And the area of the unshaded part of the octagon is $\frac{1}{\sqrt2}+1+\frac{1}{\sqrt2}+\frac{1}{4}+\frac{1}{\sqrt2}+\frac{1}{4}=1\frac{1}{2}+\frac{1}{\sqrt2},$ which is the same as $3\times\left(\frac{1}{2}+\frac{1}{\sqrt2}\right),$ which is $3$ times the shaded area.

So the ratio of the shaded area to the unshaded area is $1:3.$
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo