Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Always, Sometimes or Never? KS1

Age 5 to 7
Challenge Level Yellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Always, Sometimes or Never? KS1


Are the following statements about number always true, sometimes true or never true?
How do you know?

Can you find examples or counter-examples for each one?

For the 'sometimes' cards can you explain when they are true? Or rewrite them so that they are always true or never true?

When you add two numbers you
can change the order and the
answer will be the same

If you add 10 and take away 1,
it is the same as adding 9

When you add 10 to a number,
the answer is a multiple of 10

When you subtract one number
from another number you can
change the order and the answer
will be the same

 
What about these statements about shapes?

If you put two squares together
you get a rectangle

3D shapes have more than
four faces

When you cut a square in half
you get a triangle

Four sided shapes are called squares

Three sided shapes are called triangles


You could cut out each set of cards from this sheet (word, pdf) and arrange them in this grid.

Alternatively, you could use these interactivities to organise your thinking:


Why do this problem?

These tasks are a great opportunity for learners to use reasoning to decipher mathematical statements. We often make mathematical claims that are only true in certain contexts and it is important for learners to be able to look critically at statements and understand in what situations they apply.

The examples here only refer to the key topics of number and shape, but similar statements could be created for any area of maths.
 

Possible approach

This problem featured in an NRICH Primary webinar in November 2021.

You may want to start with one statement and have a class discussion about whether it is true. Ask learners to think of some examples to illustrate the statement and decide whether it is always, sometimes or never true. If they decide it is sometimes true, they could think about what conditions make it true.

Groups of learners could be given the set of statement cards to sort into the grid sheet. Taking each card in turn they could decide if it is always, sometimes or never true. Then they could justify their reasoning. If they think it is always true or never true, they could explain why they think this is. If they think it is sometimes true they could start by coming up with cases for each and trying to generalise. The interactivity could be used in pairs on a tablet or computer alongside, or instead of, printed cards. Once all cards are positioned in a cell of the table, a 'Submit' button appears which enables learners to get feedback on which statements have been correctly placed.

For learners who have had more experience of reasoning it might be good to ask them to try and write their ideas down in a clear way, perhaps for just one or two of the statements at first. This might be in written form, but could be an audio/video recording.

It would be worth sharing ideas as a class at the end. You could pick up on a statement that has been problematic or where there does not seem to be a consensus and support a whole class discussion.

Key questions

Can you think of an example when it isn't true?
How do you know that it is always true?
Is it possible to check all examples? Is there another way of knowing?

Possible extension

Learners could be asked to come up with their own statements that are always, sometimes and never true within a topic area. Again they should try to justify their reasons and specify the conditions necessary. You may particularly wish that learners create their own 'never' statement, as in fact none of the statements given here are 'never true'.

If appropriate, pupils could try Always, Sometimes or Never? which is based around odd and even numbers and uses similar ideas. Older children might like to have a go at the similar problems Always, Sometimes or Never? Number and Always, Sometimes or Never? Shape.

Possible support

When discussing as a class, suggest types of numbers to try or specific shapes to consider. Learners often need to start with concrete examples to develop their understanding of a particular concept before they can before they can develop their reasoning within that area. Using a variety of different manipulatives will help all learners to consolidate their understanding and support their arguments.

You may also like

Three Squares

What is the greatest number of squares you can make by overlapping three squares?

Two Dice

Find all the numbers that can be made by adding the dots on two dice.

Biscuit Decorations

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo