Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Got It

Age 7 to 14
Challenge Level Yellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Got It

Got It poster

Got It is an adding game for two players. You can play against the computer or with a friend. It is a version of a well-known game called Nim.

Start with the Got It target 23.

The first player chooses a whole number from 1 to 4.

Players take turns to add a whole number from 1 to 4 to the running total.

The player who hits the target of 23 wins the game.

Play the game several times.
Can you find a winning strategy?
Can you always win?

Does your strategy depend on whether or not you go first?
 

To change the game, choose a new Got It target or a new range of numbers to add on.

Test out the strategy you found earlier. Does it need adapting?

Can you work out a winning strategy for any target?
Can you work out a winning strategy for any range of numbers?

Is it best to start the game? Always?

Away from the computer, challenge your friends:
One of you names the target and range and lets the other player start.


Extensions:


Can you play without writing anything down?

Consider playing the game where a player CANNOT add the same number as that used previously by the opponent.
 

Why play this game?

Got It is a motivating context in which learners can apply simple addition and subtraction. However, the real challenge here is to find a winning strategy that always works, and this involves working systematically, conjecturing, refining ideas, generalising, and using knowledge of factors and multiples.

Possible approach

This problem featured in an NRICH Secondary webinar in June 2021.

All the notes that follow assume that the game's default setting is a target of 23 using the numbers 1 to 4.

Introduce the game to the class by inviting a volunteer to play against the computer. Do this a couple of times, giving them the option of going first or second each time (you can use the "Change settings" button to do this).

Ask the students to play the game in pairs, either at computers or on paper. Challenge them to find a strategy for beating the computer. As they play, circulate around the classroom and ask them what they think is important so far. Some might suggest that in order to win, they must be on 18. Others may have thought further back and have ideas about how they can make sure they get to 18, and therefore 23.

After a suitable length of time bring the whole class together and invite one pair to demonstrate their strategy, explaining their decisions as they go along. Use other ideas to refine the strategy.

Demonstrate how you can vary the game by choosing different targets and different ranges of numbers. Ask the students to play the game in pairs, either at computers or on paper, using settings of their own choice. Challenge them to find a winning strategy that will ensure they will always win, whatever the setting.

Key questions

How can I work out the 'stepping stones' that I must 'hit' on my way to the target?
Is there an efficient way of finding the first 'stepping stone'?
When is it better to go first and when is it better to let the computer go first?
If the computer says 1, I say...?
If the computer says 2, I say...?
If the computer says 3, I say...?
...

Possible extension

A more demanding game, requiring similar strategic thinking, is Last Biscuit.

Possible support

You could demonstrate the game a few more times at the start. Alter the settings on the game to have a lower target and a shorter range of numbers (for example a target of 10 using the numbers 1 and 2). As you play, note down the running totals to refer back to later.
 

Related Collections

  • From Particular to General
  • Number Play

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Roll These Dice

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

Domino Square

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo