Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tile Border

Age 11 to 14
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions

Rectangles that look most like squares will have the largest areas relative to their perimeters.

Considering the length and width of the yellow rectangle
Looking at the perimeter of the yellow rectangle, the 4 green tiles at the corners will not be included, as shown below.
  
So if there are 62 green tiles altogether, then 58 of them will touch the yellow rectangle. So the perimeter of the yellow rectangle is 58 tiles.

This means that the length and width of the yellow rectangle add up to half of 58 - which is 29.

To make a rectangle with the largest possible area, we should choose lengths to make it like a square - so 14 by 15 will work, since 14 + 15 = 29. So the yellow rectangle will be made of 14 $\times$ 15 $=$ 210 yellow tiles.


Making the perimeter of the 'largest' possible rectangle using the green tiles
Just imagining the 62 tiles that form the perimeter, we can work out how large the length and width of the whole rectangle can be.

 

If we worked out the distance around the outide of the green rectangle, then the 4 corner tiles will all be counted twice. So if there are 62 green tiles, the perimeter of the whole rectangle is 66.

That means that the length added to the width of the whole rectangle is 33.

To make a rectangle with the largest possible area, we should choose lengths to make it like a square - so 16 by 17 will work, since 16 + 17 = 33.

That means that the yellow rectangle on the inside will be 14 by 15 (there are geen tiles above and below, and left and right, as shown below, so we need to subtract 2).



So the yellow rectangle will be made of 14 $\times$ 15 $=$ 210 yellow tiles.

 
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Hallway Borders

What are the possible dimensions of a rectangular hallway if the number of tiles around the perimeter is exactly half the total number of tiles?

Square Pegs

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Boxed In

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo