Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Adding and Multiplying

Age 11 to 14
ShortChallenge Level Yellow star
Secondary curriculum
  • Problem
  • Solutions

Answer: 3165


Working backwards
Added 8 then multiplied by 5, got 2015
After adding 8: 2015$\div$5 = 403
Original number: 8 less than 403, which is 395

Multiply by 8: 395$\times$8 = 3160
Add 5: 3160 + 5 = 3165



Using algebra to find what number Amy started with
If Amy started with $n$,
Add $8$ then multiply by $5$ and get $2015$, so $(n+8)\times5=2015$
$$\begin{align}n+8&=2015\div5\\n+8&=403\\n&=403-8\\n&=395.\end{align}$$
Amy was supposed to multiply $n$ by $8$ and then add $5$, so she should have found $8n+5$.
$$8n+5=8\times395+5=3160+5=3165.$$



Using algebra to find the value of the correct expression
When Amy added $8$ to the number and then multiplied by $5$, she got $2015$, so $(n+8)\times5=2015$, where $n$ is the number that Amy started with.
Amy was supposed to multiply $n$ by $8$ and then add $5$, so she should have found $8n+5$.

We want to get from $(n+8)\times5$ to $8n+5$. Knowing $(n+8)\times8$ would be helpful, because $$\begin{align}(n+8)\times8&=8n+64\\&=8n+(5+59)\\&=(8n+5)+59\end{align}$$

If $(n+8)\times5=2015$, then $n+8=2015\div5=403$, so $(n+8)\times8=403\times8=3224$.

So $3224$ is $59$ more than $8n+5$, so $8n+5=3224-59=3165$. So Amy would have got $3165$.


You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Hallway Borders

What are the possible dimensions of a rectangular hallway if the number of tiles around the perimeter is exactly half the total number of tiles?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo