Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Clock Angle

Age 11 to 14
ShortChallenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Solutions
The diagram below shows the useful parts of the clock face.
 




Working in clock minutes
We know that the minute hand has moved through 4 out of the 5 minute markers between the 4 and the 5, but as don't yet know how many of the minute markers between the 8 and the 9 the hour hand has turned through.

The hour hand will turn through 5 minute markers in 1 hour, which is 60 minutes. So it will take 60$\div$5 = 12 minutes to turn through each minute marker.

24 = 2$\times$12, so in the 24 minutes since 8 o'clock, it will have turned through 2 minute markers. This is shown on the diagram below.


There are 15 minute markers between the 5 and the 8. The minute hand is one minute marker before the 5 and the hour hand is 2 minute markers after the 8, so there are 15 + 1 + 2 = 18 minute markers between the two hands.

There are 60 minute markers on the whole clock, and so 60 minute markers represent 360 degrees. 60$\times$6 = 360, so each minute marker contains 6 degrees.

So the angle between the hands is 18$\times$6$^{\text{o}}$ = 108$^{\text{o}}$.



Working in degrees
There are 60 minute markers on the clock, and so 60 minute markers represent 360 degrees. 60$\times$6 = 360, so each minute marker contains 6 degrees.

The angle between each pair of numbers shown on the clock is 6$\times$5 = 30$^{\text{o}}$, since it takes the minute hand 5 minutes to turn from one number to the next.

These angles are shown on the diagram below, where the angle in each yellow sector is 30$^{\text{o}}$ and the angle in the blue sector is 6$^{\text{o}}$.


The hour hand takes 60 minutes to turn through the yellow sector between the 8 and the 9, which is a turn of 30$^{\text{o}}$. After 24 minutes, it will have turned through $\frac{24}{60}$ of the 30$^{\text{o}}$. $\frac{24}{60}=\frac{12}{30}$ so $\frac{24}{60}$ of 30$^{\text{o}}$ is the same as $\frac{12}{30}$ of 30$^{\text{o}}$, which is 12$^{\text{o}}$.

This angle is shown on the diagram below, where the angle in the red sector is 12$^{\text{o}}$ (and the angles in the yellow and blue sectors are still 30$^{\text{o}}$ and 6$^{\text{o}}$ respectively).


So the angle between the minute hand and the hour hand is 6$^{\text{o}}$ + 3$\times$30$^{\text{o}}$ + 12$^{\text{o}}$, which is 108$^{\text{o}}$. 
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Hallway Borders

What are the possible dimensions of a rectangular hallway if the number of tiles around the perimeter is exactly half the total number of tiles?

Square Pegs

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Boxed In

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo