Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Hexagon Perimeter

Age 14 to 16
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions
Drawing lines from the centre to each vertex of the hexagon, as shown, splits it into 6 identical isosceles triangles.



The total angle at the centre is $360^\text o$, so the angle at the centre of each triangle must be $360\div6 = 60^\text o$.


Using trigonometry
Since the angle at the middle of each triangle is $60^\text o$, when the triangle is split in half by the radius, as shown below, the angle will be $30^\text o$. In the diagram, $s$ denotes the side lengthof the hexagon.

 

$\tan {30^\text o}=\dfrac{\frac{s}{2}}{1}\rightarrow\tan{30^\text o}=\frac{s}{2}\rightarrow2\tan{30^\text o}=s$.
$\tan{30^\text o}=\dfrac{1}{\sqrt3}$, so $s=2\times\dfrac{1}{\sqrt3}=\dfrac{2}{\sqrt{3}}$ or $1.155$.

The hexagon has $6$ sides, so its perimeter is $6\times\dfrac{2}{\sqrt3}=2\times\sqrt3\times\sqrt3\times\dfrac{2}{\sqrt3}=4\sqrt3$, or $6\times1.155=6.93$.


Using Pythagoras' Theorem
Since the angle at the middle of each triangle is $60^\text o$, the triangles must be equilateral triangles (as they are already isosceles, so the other two angles are equal, and add up to $120^\text o$).

The diagram below shows one of the triangles cut in half by the radius, where the side length of the hexagon is labelled $s$.
 


Applying Pythagoras' theorem, $$\begin{align}&1^2+\left(\frac{s}{2}\right)^2=s^2\\
&\Rightarrow1+\dfrac{s^2}{4}=s^2\\
&\Rightarrow4+s^2=4s^2\\
&\Rightarrow4=3s^2\\
&\Rightarrow s^2=\frac{4}{3}\\
&\begin{split}\Rightarrow s&=\sqrt{\frac{4}{3}}\\
&=\dfrac{2}{\sqrt3}\approx1.155\end{split}\end{align}$$

The hexagon has $6$ sides, so its perimeter is $6\times\dfrac{2}{\sqrt3}=2\times\sqrt3\times\sqrt3\times\dfrac{2}{\sqrt3}=4\sqrt3$, or $6\times1.155=6.93$.
 
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo