Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Identical Digit Multiplication

Age 11 to 14
ShortChallenge Level Yellow star
Secondary curriculum
  • Problem
  • Solutions

Trying out numbers
77$\times$11 = 770 + 77 = 847, which does not have a third digit of 3
77$\times$22 = 847 + 847 = 1694, which does not have a third digit of 3
77$\times$33 = 1694 + 847 = 2541, which does not have a third digit of 3
77$\times$44 = 2541 + 847 = 3388, which does not have a third digit of 3
77$\times$55 = 3388 + 847 = 4235, which does have a third digit of 3
So the product was 4235.


Multiplying 77 by a number written $kk$
Writing out the mutliplication like this,

All of the mutliplications will be $7\times k$, plus carried digits and the $0$ as shown below. The third digit in the product will come from the tens digit of the pink box below added to the units digts in the green box.

So the last digit of the number which is the tens digit of $7k$ plus twice the units digit of $7k$ is a $3$.
If $k=1$, then $7k=7$, and the tens digit plus twice the units digit is $0+14=14$ which has last digit 4.
If $k=2$, then $7k=14$, and the tens digit plus twice the units digit is $1+8=9$ which has last digit 9.
If $k=3$, then $7k=21$, and the tens digit plus twice the units digit is $2+2=4$ which has last digit 4.
If $k=4$, then $7k=28$, and the tens digit plus twice the units digit is $2+16=18$ which has last digit 8.
If $k=5$, then $7k=35$, and the tens digit plus twice the units digit is $3+10=13$ which has last digit 3.
So $k=5$, and the product is $4235$.


Using the 11 times table
Two-digit numbers with identical digits are precisely the multiples of 11. So 77 has been multiplied by 11$n$ for some value of $n$.

77$\times$11$n$ = (77$\times$11)$n$ = 847$n$. So 847$n$ = _ _ 3 _ .

The 800 will not contribute to this digit, so we can consider the 47 times table.
47$\times$2 = 94
47$\times$3 = 141
47$\times$4 = 188
47$\times$5 = 235
So $n$ = 5, and the product is 847$\times$5 = 4235.

You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Calendar Capers

Choose any three by three square of dates on a calendar page...

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo