The first pair of terms add up to \dfrac{1}{2}-\dfrac{1}{4}=\dfrac{1}{4}
The next pair of terms add up to \dfrac18-\dfrac1{16}=\dfrac{1}{16}
The next pair of terms (\frac1{32}-\frac1{64}) add up to \dfrac1{64}
... the last pair of terms add up to \frac1{1024}
The whole sum is \dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{64}+\dfrac{1}{256}+\dfrac{1}{1024}
Common denominator: 1024
Each fraction is 4 times smaller than the last so whole sum is equal to
\dfrac{256+64+16+4+1}{1024}=\dfrac{341}{1024}
Multiplying the sequence by 2
If \frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\dots-\frac{1}{1024}
then \begin{align}\frac{2x}{1024}=&2\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\dots-\frac{1}{1024}\right)\\=&1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\dots-\frac{1}{512}\end{align}
Notice that most of the terms in \dfrac{2x}{1024} are the same as the terms in \dfrac{x}{1024}\begin{align}\frac{2x}{1024}+\frac{x}{1024}=1-&\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\dots-\frac{1}{512}\\+&\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\dots-\frac{1}{1024}\\
\Rightarrow \frac{3x}{1024}=1+&\text{ }0\quad+\ \quad\dots\ \quad+\quad 0\text{ }- \frac{1}{1024}=\frac{1023}{1024}&\\
\therefore x=1023&\div3=341
\end{align}