Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Similar Cylinders

Age 14 to 16
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions
Using scale factors
The length scale factor between the smaller cylinder and the larger cylinder is 2, so the volume scale fator between the smaller cylinder and the larger cylinder is 2$^3$=8.

So the smaller cylinder will contain $\frac{1}{9}$ of the total volume, and the larger cylinder will contain $\frac{8}{9}$ of the total volume.

The volume of the cube is $9^3$ cm$^3$, so the volume of the smaller cylinder is $\frac{1}{9}\times9^3=81$ cm$^3$.


Using expressions for the volumes of the two cylinders
Suppose the smaller cylinder has height $h$ cm, so the larger cylinder has height $2h$ cm. Then the volume of the smaller cylinder is $\pi\times2^2\times h=4\pi h$ cm$^3$ and the volume of the larger cylinder is $\pi\times4^2\times2h=32\pi h$ cm$^3$.

The volumes of the cylinders will have to add up to the volume of the cube, so $$\begin{align}4\pi h+32\pi h=&9^3\\
\Rightarrow 36\pi h=&729\\
\Rightarrow h=&\frac{729}{36\pi}=\frac{81}{4\pi}\end{align}$$

Substituting into the expression for the volume of the smaller cylinder gives $4\pi h=4\pi\times\dfrac{81}{4\pi}=81$. So the volume of the smaller cylinder is $81$ cm$^3$.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo