Or search by topic
Published 1997 Revised 2011
This is the second of the two articles on right-angled triangles whose edge lengths are whole numbers. We suppose that the lengths of the two sides of a right-angled triangles are $a$ and $b$, and that the hypotenuse has length $c$ so that, by Pythagoras' Theorem,$$a^2 + b^2 = c^2$$.
In the first article we discussed the possibility of enlarging or shrinking a right-angled triangle to get another right-angled triangle whose sides also have lengths that are whole numbers, and we claimed there that apart from a possible scaling of the triangle, every such right-angled triangle has edge lengths of the form
$a=2pq \; \; \;$ | $b=p^2-q^2 \; \; \;$ |
$c=p^2+q^2$
|
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!
Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?