Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Diagonal Side

Age 11 to 14
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions
Measuring using unit squares
The side length of the square is equal to the diagonal of the unit square, as shown in the diagram on the right, where the red length is the side of the new square and the blue square is a unit square.


Sticking four of these together, as shown on the left, draws the whole square. The unit squares fit perfectly together as the red lines split them in half, and so each angle is 90$^\text o $ or 45$^\text o$.

The area of the square is shaded in the diagram on the right. It contains four half-unit-squares - so its area is four half-units, or two whole units.



Using Pythagoras' Theorem to find the side length
 If this square is a unit square, then its diagonal, shown in red, will be the side length of the square. 

Applying Pythagoras' Theorem to the triangle will give us information about this length, here called $c$: $1^2+1^2=c^2\Rightarrow2=c^2$

But $c^2$ is the area of the square with side length $c$. So if $c^2=2$, then the area is $2$.

You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Hallway Borders

What are the possible dimensions of a rectangular hallway if the number of tiles around the perimeter is exactly half the total number of tiles?

Square Pegs

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Boxed In

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo